Высококачественный ламповый усилитель на 6п6с однотактный схема. Однотактный высококачественный ламповый усилитель мощности. Сопротивление нагрузки и номиналы элементов

Люди, которые любят хорошую музыку, наверное, знают о ламповом усилителе Hi-End. Его можно сделать самостоятельно, если вы умеете пользоваться паяльником и имеете какие-нибудь знания по работе с радиотехникой.

Уникальный аппарат

Ламповые усилители Hi-End - это особый класс бытовой техники. С чем это связано? Во-первых, у них есть довольно интересный дизайн и архитектура. В этой модели человек может увидеть все, что ему нужно. Это делает аппарат поистине уникальным. Во-вторых, характеристики лампового усилителя Hi-End отличаются от альтернативных моделей, в которых используют Отличие Hi-End в том, что во время монтажа используется минимальное количество деталей. Также, оценивая звучание данного аппарата, люди больше доверяют своим ушам, чем измерениям нелинейных искажений и осциллографу.

Выбор схем для сборки

Предварительный усилитель довольно просто собрать. Для него вы можете выбрать любую подходящую схему и начать сборку. Другой случай - выходной каскад, то есть усилитель мощности. С ним, как правило, возникает множество различных вопросов. Выходной каскад имеет несколько типов сборки и режимов работы.

Первый тип - однотактная модель, которая считается стандартным каскадом. При работе в режиме «А» он имеет небольшие нелинейные искажения, но, к сожалению, имеет довольно плохой КПД. Также следует отметить среднюю выходную мощность. Если вам необходимо полностью озвучить довольно большое помещение, необходимо будет применять двухтактный усилитель мощности. Эта модель может работать в режиме «АВ».

В однотактной схеме для хорошей работы устройства достаточно всего двух частей: усилителя мощности и предварительного усилителя. В двухтактной модели уже используется фазоинверсный усилитель или драйвер.

Конечно, для двух типов выходного каскада, чтобы комфортно работать с , необходимо согласовать высокое межэлектродное сопротивление и низкое сопротивление самого прибора. Это можно сделать с помощью трансформатора.

Если вы являетесь ценителем «лампового» звучания, то должны понимать, что необходимо использовать выпрямитель, который произведен на кенотроне, для достижения такого звука. При этом нельзя использовать полупроводниковые детали.

Разрабатывая ламповый усилитель Hi-End, можно не применять сложные схемы. Если вам нужно озвучить достаточно небольшое помещение, то можно применить простую однотактную конструкцию, которую проще сделать и настроить.

Ламповый усилитель Hi-End своими руками

Перед началом монтажа необходимо разобраться с некоторыми правилами для сборки такого рода приборов. Нам необходимо будет применить основной принцип монтажа ламповых приборов - минимизацию креплений. Что это значит? Вам нужно будет отказаться от монтажных проводов. Конечно, это не везде получится сделать, но их количество необходимо свести к минимуму.

В Hi-End применяются монтажные лепестки и планки. Они используются в виде дополнительных точек. Такая сборка называется навесной. Также вам нужно будет распаивать резисторы и конденсаторы, которые находятся на ламповых панелях. Крайне не рекомендуется использовать печатные платы и собирать проводники так, чтобы получились параллельные линии. Таким образом сборка будет выглядеть хаотичной.

Устранение помех

Позже нужно устранить низкочастотный фон, если, конечно, он присутствует. Также важным пунктом является выбор точки заземления. В этом случае можно применить один из вариантов:

  • Тип соединения - звезда, при котором все «земляные» проводники соединяются в одну точку.
  • Второй способ - прокладка толстой медной шины. На нее необходимо распаивать соответствующие элементы.

Вообще, лучше самостоятельно найти точку заземления. Это можно сделать, определив уровень низкочастотного фона на слух. Чтобы это сделать, нужно постепенно замкнуть все сетки ламп, которые расположены на земле. Если при замыкании последующего контакта снижается уровень низкочастотного фона, то вы нашли подходящую лампу. Чтобы добиться желаемого результата, необходимо экспериментально устранять нежелательные частоты. Также нужно применить следующие меры, чтобы улучшить качество своей сборки:

  • Чтобы сделать цепи накала радиоламп, нужно применить скрученный провод.
  • Лампы, которые используются в предварительном усилителе, нужно закрывать заземленными колпаками.
  • Также заземлить необходимо корпусы с переменных резисторов.

Если вы хотите питать накал ламп предварительного усилителя, можно применить постоянный ток. К сожалению, это требует подключения дополнительного блока. Выпрямитель будет нарушать стандарты лампового усилителя Hi-End, так как это полупроводниковый прибор, который мы использовать не будем.

Трансформаторы

Еще один важный момент - использование различных трансформаторов. Как правило, применяются силовой и выходные, которые необходимо подключать перпендикулярно. Таким образом вы сможете уменьшить уровень низкочастотного фона. Трансформаторы следует располагать в заземленных кожухах. Необходимо помнить, что сердечники каждого из трансформаторов также следует заземлить. Не нужно применять когда будете устанавливать приборы, чтобы не появились дополнительные проблемы. Конечно, это не все особенности, связанные с монтажом. Их довольно много, и все рассмотреть не получится. При установке Hi-End (лампового усилителя) нельзя использовать новые элементные базы. Их сейчас применяют для подключения транзисторов и интегральных микросхем. Но в нашем случае они не подойдут.

Резисторы

Качественный ламповый усилитель Hi-End - это ретроприбор. Конечно, детали для его сборки должны быть соответствующие. Вместо резистора может подойти углеродный и проволочный элемент. Если вы не жалеете средств на разработку этого прибора, следует применить прецизионные резисторы, которые довольно дорого стоят. В ином случае применимы МЛТ-модели. Это довольно неплохой элемент, о чем свидетельствуют отзывы.

Ламповые усилители Hi-End также применимы с ВС-резисторами. Их изготавливали около 65 лет назад. Отыскать такой элемент довольно просто, достаточно всего лишь прогуляться по радиорынку. Если вы применяете резистор с мощностью больше 4 Ватт, нужно выбирать проволочные эмалированные элементы.

Конденсаторы

В установке лампового усилителя следует использовать различные типы конденсаторов для самой системы и блока питания. Они, как правило, применяются для регулировки тембра. Если вы хотите получить качественный и естественный звук, следует применять разделительный конденсатор. В этом случае появляется малый ток утечки, который позволяет изменить рабочую точку лампы.

Такой вид конденсаторов подключается к анодной цепи, по которой течет большое напряжение. При этом необходимо подключать конденсатор, который поддерживает напряжение больше 350 вольт. Если вы хотите применять качественные элементы, нужно использовать детали от компании Jensen. Они отличаются от аналогов тем, что их цена превышает 3 000 рублей, а цена самых качественных радиоэлементов доходит до 10 000 рублей. Если применить отечественные элементы, лучше выбирать между моделями К73-16 и К40У-9.

Однотактный усилитель

Если вы хотите применить однотактную модель, необходимо сначала рассмотреть ее схему. В нее входит несколько компонентов:

  • блок питания;
  • оконечный каскад;
  • предварительный усилитель, в котором можно регулировать тембр.

Сборка

Начнем сборку с предварительного усилителя. Монтаж его происходит по довольно простой схеме. Также необходимо предусмотреть регулировку мощности и разделитель на регулировку тембра. Он должен быть настроен на низкие и высокие частоты. Чтобы повысить срок годности, нужно применить многополосный эквалайзер.

В смехе предварительного усилителя можно увидеть сходства с распространенным двойным триодом 6Н3П. Необходимый для нас элемент можно собирать аналогичным способом, но использовать оконечный каскад. Это также повторяется в стереофоническом варианте. Помните, что конструкция должна быть собрана на монтажной плате. Сначала ее необходимо отладить, а потом можно установить на шасси. Если вы все правильно установили, то прибор должен сразу включиться. Дальше следует перейти к настройке. Величина анодного напряжения для разных типов ламп будет отличаться, поэтому нужно будет подбирать ее самостоятельно.

Составляющие

Если вы не хотите использовать качественный конденсатор, то можно применить К73-16. Он подойдет, если рабочее напряжение будет больше 350 вольт. Но качество звука будет заметно хуже. Также для такого напряжения подойдут электролитические конденсаторы. К усилителю нужно подключить осциллограф С1-65 и подать сигнал, который пройдет от генератора звуковой частоты. При начальном подключении нужно установить входной сигнал около 10 мВ. Если вам нужно узнать коэффициент усиления, нужно будет использовать выходное напряжение. Чтобы подобрать среднее соотношение между низкими и высокими частотами, необходимо подобрать емкость конденсатора.

Фото лампового усилителя Hi-End вы можете увидеть ниже. Для этой модели были использованы 2 лампы с октальным цоколем. К входу подключен двойной триод, который включен параллельно. Оконечный каскад для этой модели собран на лучевом тетроде 6П13С. В этом элементе вмонтирован триод, который позволяет получить хорошее звучание.

Чтобы настроить и проверить работоспособность собранного устройства, необходимо использовать мультиметр. Если вы хотите получить более точные значения, то следует применять звуковой генератор с осциллографом. Когда вы взяли соответствующие приборы, можно переходить к настройке. На катоде Л1 указываем напряжение около 1,4 Вольт, это получится сделать, если будете использовать резистор R3. Ток выходной лампы необходимо указывать 60 мА. Чтобы сделать резистор R8, необходимо установить параллельно пару резисторов МЛТ-2. Другие резисторы можете применять разных типов. Следует отметить довольно важный компонент - разделительный конденсатор С3. Он не зря был упомянут, поскольку данный конденсатор оказывает сильное влияние на звук прибора. Поэтому лучше использовать фирменный радиоэлемент. Другие элементы С5 и С6 - пленочные конденсаторы. Они позволяют увеличить качество передачи различных частот.

Блок питания, построенный на кенотроне 5Ц3С, стоит найти. Он соответствует всем правилам построения прибора. Самодельный ламповый усилитель мощности класса Hi-End будет иметь качественный звук, если вы найдете данный элемент. Конечно, в ином случае стоит искать альтернативу. В этом случае вы можете использовать 2 диода.

Для лампового усилителя Hi-End можно использовать соответствующий трансформатор, который применялся в старой ламповой технике.

Заключение

Чтобы сделать ламповый усилитель Hi-End своими руками, необходимо выполнять последовательно и аккуратно все действия. Для начала подключается блок питания с усилителем. Если вы правильно настроите эти приборы, то можно монтировать предварительный усилитель. Также с помощью соответствующей техники можно все элементы проверять, чтобы не допустить поломку После сборки всех элементов воедино можно приступать к оформлению прибора. Для корпуса хорошо может подойти фанера. Чтобы создать стандартную модель, необходимо сверху расположить радиолампы и трансформаторы, а на передней стенке уже можно вмонтировать регуляторы. С помощью них вы сможете усилить тембр и посмотреть индикатор питания.

За свою радиолюбительскую карьеру, мной было собрано и испытанно более десятка различных усилителей на лампах - как двухтактных, так и однотактных, в том числе и с параллельным включением нескольких . Чаще всего в ход шли старые добрые и . Однако в интернете неоднократно мелькали схемы со строчными пентодами на выходе - 6п45с, 6п44с и 6п41с. На последней и решил остановиться, так как несмотря на более низкую мощность чем у 6п45-ки, она не имеет сверху неудобной и опасной пимпочки, куда подключают провод анода с высоким напряжением. Ещё больше подогрели интерес противоречивые отзывы на аудиофильских форумах - от восхваления, до полного отрицания её звуковых параметров. Как известно, лучше собрать самому, а тогда уже делать окончательный вывод. За основу взял принципиальную схему однотактного усилителя С.Сергеева, только немного изменил номиналы обвязок и смещение выходного каскада.

В драйвере стоит так привычная в выходе 6п14п - тут её роль второстепенна, предварительное усиление. В выходном каскаде - 6п41с с автоматическим смещением, которое отлично зарекомендовало себя своей простотой и стабильностью параметров работы лампы. Единственная трудность - мощный резистор, была решена элементарно. Так как поиск по коробкам с 10-ти ваттными зелёными керамическими резисторами результатов не дал (есть всё, кроме необходимых 450-680 Ом), пришлось спаять гирлянду из трёх МЛТ-2 на небольшой платке, 180х3=560 Ом.

На ней же собран и катодный резистор второго канала. Так как расчётная мощность 2 ватта - этих 6-ти хватает вполне. Всё равно пришлось бы думать, как закрепить 2 мощных трубчатых резистора.

Питание на УНЧ поступает от сетевого трансформатора, выпрямителя и дросселя. Трансформатор ТСШ-170 - от лампового телевизора, сюда можно поставить и ТС-160, ТС-180. В общем любой, способный обеспечить 250-300 В 0,3 А анодного и 6,3 В 3 А накального напряжения. Диоды выпрямителя - IN4007, дроссель - Др-0,1. Он имеет 1000 витков провода 0,25 мм (это если вы не найдёте готовый и будете мотать самостоятельно или брать сетевой трансформатор на его замену).

Несмотря на значительное напряжение и ток в выходном каскаде - около 0,06 А, рискнул поставить относительно слабые ТВЗ-1, более уместные в усилителях 6п14п. Как впоследствии выяснилось правильно сделал:)

Корпус для нашего однотактного УНЧ не мешало бы взять металлический, как всегда до этого и делал, но решил и в этом рискнуть, задействовав ненужную китайскую фронтальную колоночку, от 6-ти канального компьютерного усилителя. Этот номер тоже прошёл на ура:)

Акустическую систему выпотрошим, спроектируем будущее расположение радиоэлементов и выпилим необходимые окна.

Лампы естественно должны находиться сверху, их устанавливаем на металлическое основание - лист двухмиллиметрового алюминия, с вырезанными круглыми окнами под панельки.

Затем этот лист обклеивается самоклейкой цвета "металлик" в тон основному корпусу. После обклейки, отверстия под лампы аккуратно освобождаются с помощью лезвия.

Нижняя часть корпуса тоже усилена металлом - чтоб не вывалился тяжёлый сетевой трансформатор. На неё планировалось установить ещё и электронный фильтр питания, но в итоге от него отказался. Напряжения на выходе БП и так маловато (всего 260 В), поэтому терять 20 В на ЭФ - расточительство.

Сзади выпиливаем прямоугольное окно под текстолитовую панель гнёзд и разъёмов - сетевое, аудиовход и аудиовыход на динамики.

Эту панель так-же обклеиваем самоклейкой.

После чего вставляем все контактные элементы и прикручиваем её шурупами к предварительно выпиленному окну АС.

Большие электролитические конденсаторы установил на единое алюминиевое основание. Этих габаритных электролитов 4 - три для фильтра БП и один на 300 мкФ 63 В, установленный в катоде 6п41с.

Материал корпуса - ДСП, оказался очень удобен в обработке, а электромагнитные помехи от приборов, которых так опасался, абсолютно не слышны. Но об этом статьи - сборка, настройка и испытание схемы.

— большинство ценителей качественной музыки, умеющие обращаться с паяльным оборудованием и имеющие определенный опыт по ремонту радиотехники, могут попробовать своими силами собрать ламповый усилитель высокого класса, который обычно называют Hi-End. Ламповые аппараты такого типа относятся во всех отношениях к особенному классу бытовой радиоэлектронной аппаратуры. В основном они обладают привлекательным дизайном, при этом ничего не закрыто кожухом — все на виду.

Ведь понятно, чем больше видно установленный на шасси электронных компонентов, тем больше авторитет у аппарата. Естественно и параметрические значения лампового усилителя существенно превосходят модели выполненные на интегральных или транзисторных элементах. Вдобавок к этому, при анализе звучания лампового устройства все внимание отдается персональной оценке звука, нежели изображению на экране осциллографа. К тому же отличается незначительным набором используемых деталей.

Как выбрать схему лампового усилителя

В случае выбора схемы предварительного усилителя не бывает особых проблем, то при выборе подходящей схемы оконечного каскада могут создаться затруднения. Ламповый усилитель мощности звука может иметь несколько вариантов исполнения. Например бывают аппараты однотактные и двухтактного типа, а также имеют различные режимы работы выходного тракта, в частности «А» либо «АВ». Выходной каскад однотактного усиления является по-большому счету образцом, потому как находится в режиме «А».

Этот режим работы характеризуется наименьшими величинами нелинейных искажений, но КПД у него не высокий. Также и мощность на выходе такого каскада не очень большая. Следовательно, при необходимости озвучивания внутреннего пространства средних размеров потребуется двухтактный усилитель, с режимом работы «АВ». Но когда однотактный аппарат может быть выполнен только лишь с двумя каскадами, один из которого предварительный, а другой усиливающий, то для двухтактной схемы и ее корректной работы понадобится драйвер

Но если однотактный ламповый усилитель мощности звука может состоять всего из двух каскадов – предварительного усилителя и усилителя мощности, то двухтактной схеме для нормальной работы требуется драйвер или каскад образующий два напряжения идентичной амплитуды, сдвинутые по фазе на 180. Выходные каскады, независимо от того однотактный он или двухтактный, предполагают наличие в схеме выходного трансформатора. Который выполняет роль согласующего устройства межэлектродного сопротивления радиолампы с малым сопротивлением акустики.

Настоящие почитатели «лампового» звучания утверждают, что схема усилителя не должна иметь каких бы то ни было полупроводниковых приборов. Поэтому выпрямитель блока питания должен быть реализован на вакуумном диоде, который специально разработан для высоковольтных выпрямителей. Если вы намерены повторить рабочую, проверенную схему лампового усилителя, то не нужно сразу собирать непростое двухтактное устройство. Для озвучивания небольшого помещения и получения идеальной звуковой картины, в полной мере хватит однотактного лампового усилителя. К тому же его проще изготовить и настроить.

Принцип сборки ламповых усилителей

Существую определенные правила монтажа радиоэлектронных конструкций, в нашем случае — это ламповый усилитель мощности звука . Поэтому перед началом изготовления аппарата, желательно бы хорошенько изучить первостепенные принципы сборки таких систем. Главным правилом при сборке конструкций на вакуумных радиолампах, является разводка соединительных проводников по максимально короткому пути. Наиболее эффективны методом считается воздержание от применения проводов в тех местах, где можно обойтись без них. Постоянные резисторы и конденсаторы необходимо устанавливать прямо на панельки ламп. При этом, в качестве вспомогательных точек нужно применять специальные «лепестки». Такой способ сборки радиоэлектронного устройства именуется «навесной монтаж».

На практике, при создании ламповых усилителей печатные платы не применяются. Также, одно из правил гласит — избегайте прокладки проводников параллельно друг другу. Однако такая, на первый взгляд беспорядочная разводка считается нормой и вполне оправдана. Во многих случаях, когда усилитель уже собран, в динамиках слышен фон низкой частоты, его обязательно нужно убирать. Первостепенную задачу выполняет правильный выбор точки «земля». Есть два способа организовать заземление:

  • Соединение всех проводов идущих на «землю» в одну точку — называется «звездочка»
  • Установка по периметру платы энергоэффективной электротехнической медной шины, а к ней уже припаивать проводники.

Выверять место для точки заземления нужно путем эксперимента, прослушивая наличие фона. Чтобы определить откуда исходит фон низкой частоты, нужно сделать так: Нужно методом последовательного эксперимента, начиная с двойного триода предварительного усилителя, закорачивать сетки ламп на «землю». В случае заметного снижения фона, станет понятно, цепь именно какой лампы «фонит». А далее, также опытным путем нужно пытаться устранить эту проблему. Существуют вспомогательные методы, которые обязательны к применению:

Лампы предварительного каскада

  • Электровакуумные лампы предварительного каскада нужно обязательно закрывать колпачками, а их в свою очередь заземлить
  • Корпуса подстроечных резисторов, так же подлежат заземлению
  • Провода накала ламп требуется свить

Ламповый усилитель мощности звука , вернее сказать, цепь накала лампы предварительного усилителя допускается запитывать постоянным током. Но в таком случае придется в блок питания добавить еще один выпрямитель собранный на диодах. А использование выпрямительных диодов сам по себе нежелателен, так как ломает конструктивный принцип изготовления лампового Hi-End усилителя без применения полупроводников.

По парное размещение выходного и сетевого трансформаторов в ламповом устройстве, является достаточно важным моментом. Данные компоненты устанавливаться должны строго вертикально, тем самым удается уменьшить уровень фона из сети. Одним их эффективных способов установки трансформаторов является их помещение в кожух, выполненный из металла и заземленный. Магнитопроводы трансформаторов так же нужно заземлять.

Ретро-компоненты

Радиолампы, это приборы из далеких времен, но вновь вошедшие в моду. Поэтому нужно комплектовать ламповый усилитель мощности звука такими же ретро-элементами, которые устанавливались в первоначальных ламповых конструкциях. Если это касается постоянных резисторов, то можно применить углеродистые резисторы, имеющие высокую стабильность параметров либо проволочные. Однако эти элементы обладают большим разбросом — до 10%. Поэтому для лампового усилителя лучшим выбором будет использование малогабаритных прецизионных резисторов с металлодиэлектрическим проводящим слоем — С2-14 или С2-29. Но цена таких элементов существенно высокая, то взамен им вполне подойдут и МЛТ.

Особо ревностные приверженцы ретро-стиля достают для своих проектов «мечту аудиофила». Это — углеродистые резисторы ВС, разработанных в Советском Союзе специально для применения в ламповых усилителях. При желании их можно отыскать в ламповых радиоприемниках 50-60 годов выпуска. Если по схеме резистор должен иметь мощность более 5 Вт, то тогда подойдут проволочные резисторы ПЭВ, покрытые стекловидной теплостойкой эмалью.

Конденсаторы, применяемые в ламповых усилителях в основном не критичны к тому или иному диэлектрику, а также к самой конструкции элемента. В трактах настройки тембра можно использовать конденсаторы любого типа. Также и в цепях выпрямителя блока питания можно устанавливать любого типа конденсаторы в качестве фильтра. При конструировании усилителей низкой частоты высокого качества, большое значение имеют установленные в схеме разделительные конденсаторы.

Именно они оказывают особое влияние на воспроизведение натурального, не искаженного звукового сигнала. Собственно благодаря им мы получаем исключительный «ламповый звук». При выборе разделительных конденсаторов, которые будут устанавливаться в ламповый усилитель мощности звука , нужно обратить особое внимание на то, чтобы ток утечки был как можно меньшим. Потому, что от данного параметра напрямую зависит корректная работа лампы, в частности ее рабочая точка.

Помимо этого, не нужно забывать, что разделительный конденсатор подключен к анодной цепи лампы, отсюда следует, что он находится под большим напряжением. Так, что такие конденсаторы должны иметь рабочее напряжение не менее 400v. Одними из лучших конденсаторов работающих в роли переходного, считаются емкости от фирмы JENSEN. Именно эти емкости применяются в топовых усилителях HI-END класса. Но их цена очень высокая, доходящая до 7500 рублей за один конденсатор. Если использовать отечественные компоненты, то наиболее подходящими будут например: К73-16 либо К40У-9, однако по качеству они значительно уступают фирменным.

Однотактный ламповый усилитель мощности звука

Представленная схема лампового усилителя имеет в своем составе три отдельных модуля:

  • Предварительный усилитель с возможностью регулировки тембра
  • Выходной каскад, то-есть сам усилитель мощности
  • Источник питания

Предусилитель изготавливается по простой схеме с возможностью регулировать усиление сигнала. А также имеет пару отдельных регуляторов тембра низкой и высокой частоты. Для повышения эффективности работы аппарата, в конструкцию предварительного усилителя можно внедрить добавить эквалайзер на несколько полос.

Электронные компоненты предварительного усилителя

Представленная здесь схема предварительного усилителя выполнена на одной половине двойного триода 6Н3П. Структурно предусилитель может быть изготовлен на общем каркасе с выходным каскадом. В случае исполнения стерео варианта, то естественно образуются два идентичных канала, следовательно, триод будет задействован полностью. Практика показывает, что приступая к созданию какой-либо конструкции, лучше всего сначала воспользоваться монтажной платой. А после налаживания уже компоновать в основном корпусе. При условии правильной сборки, предусилитель без проблем начинает работать синхронно с подачей напряжения питания. Однако на этапе настройки нужно выставить напряжение анода радиолампы.

Конденсатор в выходной цепи С7 можно применить К73-16 с номинальным напряжением 400v, но желательно от фирмы JENSEN, который обеспечит лучшее качество звучания. Ламповый усилитель мощности звука не особо критичен к электролитическим конденсаторам, поэтому можно применять любого типа, но с запасом по напряжению. На этапе настроечных работ, во входную цепь предварительного усилителя подключаем генератор низкой частоты и подаем сигнал. На выходе должен быть подключен осциллограф.

Изначально размах сигнала на входе выставляем в пределах 10 mv. Затем определяем значение напряжения на выходе и вычисляем усиливающий коэффициент. Звуковым сигналом в диапазоне 20 Гц — 20000 Гц на входе можно высчитать пропускную способность усиливающего тракта и изобразить его АЧХ. Путем подбора емкостного значения конденсаторов, есть возможность определить приемлемую пропорцию высокой и низкой частоты.

Настройка лампового усилителя

Ламповый усилитель мощности звука реализован на двух октальных радиолампах. Во входной цепи установлен двойной триод с отдельными катодами 6Н9С включенный по параллельной схеме, а оконечный каскад выполнен на довольно мощном выходном лучевом тетроде 6П13С включенным как триод. Собственно, исключительное качество звучания создает именно триод установленный в оконечном тракте.

Чтобы выполнить простую настройку усилителя достаточно будет обыкновенного мультиметра, а чтобы выполнить точную и верную регулировку необходимо иметь осциллограф и генератор звуковых частот. Начинать нужно с установки напряжения на катодах двойного триода 6Н9С, которой должно быть в пределах 1,3v — 1,5v. Выставляется это напряжение подбором постоянного резистора R3. Ток на выходе лучевого тетрода 6П13С должен находится в диапазоне от 60 до 65 mA. Если нет в наличии мощного постоянного резистора 500 Ом — 4 Вт (R8), то его можно собрать из пары двух-ваттных МЛТ с номиналом 1 кОм и включенных параллельно.Все другие, указанные в схеме резисторы можно устанавливать любого типа, но предпочтение все же отдается С2-14.

Точно так же как и в предусилителе, важной составляющей является разделяющий конденсатор С3. Как уже упоминалось выше, идеальным вариантом было бы установка этого элемента от фирмы JENSEN. Опять же, если таковых нет под рукой, то можно использовать и советские, пленочные конденсаторы К73-16 либо К40У-9, хотя они хуже заморских. Для корректной работы схемы, эти компоненты подбираются с наименьшим током утечки. В случае невозможности выполнить такой подбор, то желательно все же купить элементы зарубежных производителей.

Блок питания усилителя

Блок питания собран с использованием кенотрона прямого накала 5Ц3С, обеспечивающий выпрямление переменного тока, в полной мере соответствующий нормам конструирования ламповых усилителей мощности HI-END класса. Если нет возможности приобрести такой кенотрон, то вместо него можно установить два выпрямительных диода.

Установленный в усилителе блок питания не требует какого либо налаживания — включил и все. Топология схемы дает возможность использование любых дросселей имеющих индуктивность не менее 5 Гн. Как вариант: применение таких приборов от устаревших телевизоров. Трансформатор питания, также можно позаимствовать у старой ламповой аппаратуры советского производства. Если есть навыки, то можно изготовить его самостоятельно. Трансформатор должен состоять из двух обмоток с напряжением по 6,3v каждая, обеспечивающие питанием радиолампы усилителя. Еще одна обмотка должна быть с рабочим напряжением 5v, которые подаются в цепь накала кенотрона и вторичную, имеющую среднюю точку. Эта обмотка гарантирует два напряжения по 300v и ток 200 мА.

Очередность сборки усилителя мощности

Порядок сборки лампового усилителя звука такой: вначале делается источник питания и сам усилитель мощности. После того как будет произведены настройки и установка необходимых параметров, подключается предусилитель. Все параметрические замеры измерительными приборами нужно делать не на «живой» акустической системе, а на ее эквиваленте. Это для того, чтобы избежать возможности вывода из стоя дорогостоящей акустики. Эквивалент нагрузки можно изготовить из мощных резисторов или из толстой нихромовой проволоки.

Далее нужно заняться корпусом для лампового усилителя звука. Дизайн можно разработать самостоятельно, либо у кого то позаимствовать. Наиболее доступным материалом для изготовления корпуса, является многослойная фанера. На верхней части корпуса устанавливаются лампы выходного и предварительного каскада и трансформаторы. На фронтальной панели расположены устройства регулировки тембра, звука и индикатор подачи напряжения питания. В конечном итоге у вас может получится устройства наподобие показанных здесь моделей.

Автор схемы этого усилителя занимается конструированием высококачественной звуковоспроизводящей аппаратуры с 1963 года. По моему мнению, он немало преуспел в этом. Конструкции его имеют отличное звучание, легко повторяемы и имеют заслуженный успех даже у начинающих. Я лишь (с разрешения автора) изложу особенности его работы.

Вниманию читателей предлагается простая оригинальная схема усилителя мощности в двух вариантах. Первый – бюджетный, с автоматическим смещением выходной лампы. Второй – с фиксированным смещением от отдельной обмотки силового трансформатора.

По мнению автора схемы, вариант с фиксированным смещением отличается более глубоким и красивым звуком, хотя и вариант с автоматическим смещением вас не разочарует, позволив всем его повторившим, не узнать звучание своих любимых записей.

Рис.1 Вариант схемы А. Манакова с автосмещением выходной лампы. Выходной трансформатор фирмы “Аудиоинструмент”

Схема усилителя в варианте с автосмещением выходной лампы приведена на рис.1 Входной сигнал после регулятора громкости подается на управляющую сетку двойного триода 6Н2П.Лампа эта имеет высокий коэффициент усиления и высокое внутреннее сопротивление, что в данном случае не очень хорошо. В подробности этого я вдаваться не буду, так как об этом можно прочитать в любой радиотехнической литературе.

Основной особенностью включения лампы предварительного каскада является параллельное включение двух триодов, находящихся внутри одного баллона лампы 6Н2П. Этим достигается уменьшение внутреннего сопротивления лампы, что влечет за собой улучшение нагрузочной способности и соотношение сигнал/шум. Сопротивление нагрузки выбрано не случайно, при этом достигается компенсация коэффициента нелинейных искажений выходного каскада и высокая динамика сигнала. Конденсатор 470 мкф, шунтирующий резистор катода, позволяет устранить влияние обратной связи, уменьшающей усиление первого каскада.

Конденсатор 0,22мкф является разделительным и от его качества очень сильно зависит звук усилителя в целом. Можно применить ФТ, К71, К78 ,при желании получить более “теплое” звучание К40У-2, К40У-9, К42У-2. Не рекомендуется БМ, МБМ ввиду их утечки. Нежелательно применять К73 из-за их менее естественного звучания. Еще одно. При применении выходного трансформатора ТВЗ 1-9,емкость этого конденсатора следует уменьшить до 0,047-0,068 мкф. Дело в том, что ламповый однотактник при внешней простоте -конструкция сложная, например, емкость этого конденсатора входит в расчет амплитудно-частотной характеристики выходного каскада.

Теперь о выходном каскаде. Лампа 6П43П была выбрана не случайно. После прослушивания многих экземпляров ламп 6П14П,6П18П,6П43П было отдано предпочтение именно последней. Конструкция лампы характеризуется правильной геометрией внутренних частей, что само по себе говорит о высоком классе этого пентода. Поставьте именно эту лампу. Вы будете вознаграждены сочным и ярким звучанием, прекрасной детализацией звука и его оттенками.

Емкость конденсатора в цепи автоматического смещения можно увеличить до 1000 мкф (сравните звук), а резистором, включенным параллельно этому конденсатору, выставляется ток катода выходной лампы в пределах 50 ма (в варианте с автосмещением).

Автор использовал выходной трансформатор ТВЗ 1-9 от лампового телевизора, перебранный и “сваренный” в парафине заново, заменив бумагу в зазоре на чертежную кальку, я же использовал трансформатор TW6SE московской фирмы “Аудиоинструмент”.

По моему мнению, отличному, например, от мнения Симулкина, схема усилителя которого приведена в журнале “Радиохобби” №2 за 2003год (стр.57), никакой другой режим, кроме триодного, использовать не нужно. Рассуждения Станислава на странице 58 о пентодном включении выходной лампы для рок-музыки,ультралинейного для шансона и реггей, а триодного для классической музыки мне кажутся спорными. Эклектикой можно заниматься, но к звуку это никакого отношения не имеет. Основы построения высококачественных усилителей неизменны в течение многих десятилетий. Это:

1. Кратчайший, с наименьшими потерями, путь сигнала.

2. Высококачественные комплектующие.

3. Триодный режим выходного каскада.

Щелкать переключателем, да еще в анодной цепи, нелогично и нецелесообразно. С этим к сурдологу.


Рис. 2 Схема БП для усилителя А. Манакова на 6П43П с автосмещением

Вариант блока питания приведен на рисунке 2. Схема БП не отличается от описанных многократно и в комментариях не нуждается. Питать накал постоянным током не нужно, это приведет к ухудшению микродинамики.


Рис. 3 Вариант схемы А. Манакова с фиксированным смещением выходной лампы.

Для варианта усилителя с фиксированным смещением выходной лампы, схема которого приведена на рис. З, в блок питания добавляется дополнительный источник напряжения смещения, схема которого дана на рис.4. Подстроечным резистором R2 выставляется напряжение 0,04-0,05 вольт в контрольной точке К.Т. на схеме усилителя рис.3.


Рис. 4 Схема БП для варианта с фиксированным смещением.

В заключении привожу параметры усилителя при фиксированном смещении, измеренные А. Манаковым.

Р вых =2,5 Вт при КНИ=2-3% на частоте 1000 Гц. При Рвых=2,2 Вт КНИ=0,8-1% При использовании ТВЗ 1-9 частотный диапазон с 35-40 Гц до 18-19 кГц при неравномерности 1,5-2,0 дБ. (Зависит от качества исполнения ТВЗ 1-9). При использовании TW6SE фирмы “Аудиоинструмент”, диапазон частот еще шире. Более подробно об изделиях этой фирмы можно узнать по ссылке на сайте моего хорошего друга Михаила Торопкина www.metaleater.narod.ru

Пусть вас не пугает невысокая выходная мощность – в комплекте с акустикой, чувствительностью от 90 дБ, 2-З Вт вполне достаточно.

В дальнейшем предполагается ознакомить читателей со многими схемами А.Манакова, отличающимися простотой и оригинальностью, а так же прекрасным звуком.

29 комментариев: Высококачественный однотактный усилитель мощности Манакова

, г. Брянск

v-puzanov(dog)*****

Домашний высококачественный однотактный усилитель

мощности на лампах 6С19П и 6П31С.

Вашему вниманию предлагается ещё одна статья об однотактных усилителях мощности (три варианта). Как Вы уже поняли из заголовка статьи, усилители предназначены для прослушивания музыки в домашних условиях. Несмотря на простоту схем, они обеспечивает очень комфортное

и практически неокрашенное высококачественное звучание в небольших помещениях (до 25-30 квадратных метров). Чувствительность усилителей составляет от 0,8 до 1,7 вольта (в зависимости от конкретных экземпляров применённых ламп), что позволяет использовать для них, в качестве источника сигнала, линейный выход CD проигрывателя без предварительного усилителя. При этом выходная мощность (в зависимости от применённых ламп в выходном каскаде) составит от 2,5 Вт (для лампы 6С19П) до 4,0 Вт (для лампы 6П31С).

Более того, во всех вариантах применяется один и то же источник питания и моточные изделия (трансформаторы и дроссели), что облегчает выбор и практическую реализацию наиболее понравившегося варианта.

Должен отметить, что простота схем кажущаяся, и я попытаюсь, по мере изложения, убрать все «подводные камни», которые могут встретиться при повторении данных конструкций и объяснить особенности их работы.

В качестве лампы оконечного каскада, первых двух вариантов, выбран триод 6С19П. АСХ лампы приведена чуть ниже.

Несмотря на «стабилизаторное происхождение» - лампа достаточно хорошо работает в звуковых схемах, благодаря высокой линейности вольт амперных характеристик (ВАХ), малым искажениям и достаточно большой мощности рассеивания анода (11Вт). Кроме этого, лампа нейтральна по звучанию, т. е. не вносит никакой собственной окраски в исходный музыкальный сигнал, что очень важно для достоверного звуковоспроизведения.


К достоинствам можно также отнести относительно небольшое рабочее напряжение анодного источника, что позволяет в блоке питания использовать электролитические конденсаторы, рассчитанные на напряжение 250 вольт (а это относительно небольшие размеры и стоимость), и небольшой ток накала (1 ампер).

Важным достоинством лампы является также низкое внутреннее сопротивление, что позволяет использовать выходные трансформаторы с относительно малым сопротивлением первичной обмотки переменному току (Ra). Кроме этого, низкое внутреннее сопротивление существенно улучшает звукопередачу в низкочастотном диапазоне.

Суммарная входная ёмкость лампы 6С19П тоже мала, что облегчает выбор лампы драйвера (об этом поговорим подробнее чуть позже).

Сразу поясню, что эта ёмкость складывается из нескольких слагаемых:

1) Произведение проходной ёмкости (8 пФ) на динамический коэффициент усиления (около 2-х) плюс 1, иначе ёмкость Миллера.

2) Входная ёмкость лампы (6,5 пФ)

3) Ёмкость монтажа (8-10 пФ)

Таким образом, имеем 8*(2+1)+6,5+(8…10)=38,5…40,5 пФ

Для удобства дальнейших расчётов примем её равной 40 пФ.

Недостатком лампы следует признать достаточно большое напряжение раскачки, но эта проблема разрешима, если в качестве лампы драйвера применить триод с высоким коэффициентом усиления или пентод в штатном или триодном включении.

В качестве лампы предварительного каскада (драйвера) я предлагаю Вам попробовать триод или пентод. Звучание этих каскадов (и, как следствие, усилителей) будет разным, и Вы сможете выбрать вариант, наиболее полно соответствующий Вашим музыкальным предпочтениям.

В первом варианте, в качестве драйвера, выбран триод 6С4П.

Его динамический коэффициент усиления в данной схеме составляет 35-36 (в зависимости от экземпляра). Кроме этого, лампа характеризуется высокой крутизной, малыми шумами, а также низким внутренним сопротивлением, что для высококачественного звуковоспроизведения немаловажно. Про шумы и низкое внутреннее сопротивление, я думаю, всё понятно без объяснений, а вот про крутизну позволю себе сказать несколько слов.

Дело в том, что чем выше крутизна лампы, тем более постоянным является выходное сопротивление каскада, собранного на ней, а это, как Вы понимаете, способствует более равномерной звукопередаче всего частотного диапазона.

Недостатками ламп (как же без них) с высокой крутизной принято считать наличие микрофонного эффекта, а так же раннее (от -1,1 вольта) появление сеточных токов. Однако, на практике, оба этих недостатка оказываются не столь существенными.

Из достаточно большого количества ламп (более 30 шт.), мне не удалось найти хотя бы одну, с заметным микрофонным эффектом. Такие же результаты были и у моих друзей. Но, на всякий случай, я поставил ламповые панельки на амортизаторы , применив для этого силиконовый шланг вакуумного корректора для легкового автомобиля. Надеюсь, что каждый из Вас сможет легко придумать свой способ, исходя из собственного опыта и наличия различных материалов.

Про второй недостаток очень хорошо сказал Дмитрий Андронников (автор усилителя на RB300X, опубликованного в А., а также многих других конструкций) в личной переписке.


Уважаемые коллеги ! В усилителе на RB300Х(ГМ5Б) смещение входного каскада (он собран, как раз, на лампе 6С4П) в действительных условиях находилось в районе -1,5...-2,0 В. К слову, реально термоток сетки проявляется лишь при напряжениях выше - 0.4.В, да и то, его значение весьма невелико и при сопротивлении источника сигнала менее 10 кОм (это 50 кОм регулятор громкости в среднем, самом наихудшем, с этой точки зрения, положении) искажения, им вызванные, при амплитуде входного сигнала 1,5 В (смещение -1,7 В) не превышают -70 дБ, причем, в основном по четным гармоникам и с быстрым убыванием по номеру.-

Надеюсь, комментарии излишни, однако, чтобы перестраховаться, я выбрал смещение драйверного каскада 2,1 вольта. К слову сказать, выбирать смещение большим, чем 2,4 вольта, не следует, так как из-за веерной характеристики лампы появятся значительные искажения.

Во втором варианте, после многочисленных экспериментов и прослушиваний, в качестве драйвера, я выбрал пентод 6Ж8.

Лампа не дефицитна, и, с моей точки зрения, способна обеспечить отличное качество звуковоспроизведения. Использование пентода позволило вообще отказаться от электролитического конденсатора, шунтирующего катодный резистор, пагубно влияющего на звучание. Несмотря на это, драйверный каскад имеет усиление порядка 40-45, в зависимости от конкретных экземпляров ламп. Если нужно ещё большее усиление, можно увеличить номинал анодного резистора, вплоть до 100 кОм, соответственно пересчитав режимы каскада.

Лампа 6Ж8 работает в так называемом токовом режиме (ток покоя около 7,0 ма) в штатном, пентодном включении. Несмотря на то, что ток анода превышен примерно в два раза, суммарная мощность рассеивания составляет около 1 Вт, что значительно ниже предельной мощности (2,8 Вт), и отрицательного воздействия на лампу такое включение не оказывает.

Каскад обладает ясным, чистым звучанием, с отличной детальностью и динамикой. Утверждения некоторых скептиков о том, что пентод не может хорошо звучать, с моей точки зрения являются голословными. Попробуйте, может это и есть «Ваш звук».

Перейдём к схеме. На рис. 1 приведена принципиальная электрическая схема одного канала усилителя с драйвером на лампе 6С4П и блока питания для двух каналов.

Несмотря на то, что расчёт лампового каскада есть в различной литературе и в Интернете, у начинающих возникает много вопросов, связанных с этим расчётом. Поэтому я счёл возможным привести простой расчёт лампового каскада на триоде 6С19П. Используя этот расчёт, в качестве образца, Вы сможете сами легко рассчитать каскад на любой лампе. Разница между расчётом драйверного и оконечного каскада состоит лишь в том, что в качестве анодной нагрузки, в первом случае, будет резистор (у меня 8,1 кОм), а во втором – сопротивление первичной обмотки выходного трансформатора переменному току Ra.

Выходной трансформатор выбираю с Ra=2,4 кОм/8 Ом (далее Вы поймёте, почему 2,4кОм). Для расчёта используем семейство АСХ (амплитудно-сеточных характеристик) для лампы 6С19П. Их можно «скачать» с различных сайтов или взять из справочника. Поскольку в расчётах мы будем использовать данные, получаемые путем различных построений, постарайтесь, чтобы чертежи АСХ были достаточно крупными (так будет точнее).

На следующем рисунке Вы можете наглядно увидеть пример построения линии нагрузки, предложенный конструктором из Перми. Его данные чуть-чуть отличаются от моих, но на практике эти отличия будут не существенны.

Вначале строим вспомогательную линию нагрузки (на рисунке она не показана). Зная сопротивление первичной обмотки выходного трансформатора переменному току (в моём случае 2400 Ом) и произвольно выбранный ток, чтобы было удобнее считать (например, 0,1А), находим соответствующее напряжение по закону Ома. В моём случае 240 вольт. Соединяем точки 0,1А и 240В прямой линией – это и есть вспомогательная линия нагрузки. Реальная линия нагрузки будет всегда идти параллельно вспомогательной.

При выборе рабочей точки каскада наша основная задача состоит в том, чтобы получить от него максимально возможную выходную мощность при минимальных искажениях.

Здесь всё не совсем просто. Дело в том, что чётные гармоники для нашего с Вами слуха являются консонансными (благозвучными), а нечётные, с точностью до наоборот, диссонансными. Поэтому гораздо лучше иметь (с точки зрения звучания), например, 6% второй гармоники при 0,5% третьей, чем 3% второй и 2% третьей. Этот факт всегда нужно учитывать при построении реальной линии нагрузки для Вашего каскада.

Для каждой конкретной лампы, если нет опыта, придётся несколько раз строить линию динамической нагрузки (и, естественно, производить расчёт), изменяя при этом Ra (т. е. наклон линии) и выбирая смещение, до тех пор, пока расчётные значения мощности и искажений (особенно третьей гармоники) не станут оптимальными.

Вообще, максимальная выходная мощность достигается при условии Ra=2Ri, где Ra – сопротивление первичной обмотки выходного трансформатора по переменному току, а Ri – внутреннее сопротивление лампы. К сожалению, в этом случае слишком велики нелинейные искажения. Поэтому сопротивление первичной обмотки трансформатора Ra выбирают в пределах 3-5Ri (иногда до 7-10Ri), как компромисс между величиной нелинейных искажений и выходной мощности. Но нужно учесть, что мощность каскада снижается линейно, а коэффициент нелинейных искажений (КНИ) по экспоненте, со всеми вытекающими последствиями, поэтому существует понятие разумной достаточности. Кроме того, чрезмерное увеличение анодной нагрузки снижает динамику каскада.

Итак, рабочая точка имеет координаты Iаo=0,065А по оси Y и Uао=171В по оси X. Проводим линию динамической нагрузки через эту точку, строго параллельно вспомогательной линии нагрузки. Смещение я выбрал 56 вольт, а на рисунке коллеги из Перми оно получилось равным 52 вольтам. Это естественно, так как мы пользовались АСХ, взятыми из разных источников.

При пересечении линии нагрузки с кривыми Uсм=0 и Uсм=2Uо

получаем следующие координаты

Iа max=0.115A; Iа min=0.027A; Uа min=56V

Выходная мощность с учётом всех гармонических составляющих рассчитывается по формуле

0,9(Uао-Uаmin)(Iаmax-Iао)

Pвых = -- = 2,58Вт

Теперь определяем суммарный коэффициент гармоник с учётом всех гармонических составляющих.

Находим на графике точки пересечения линии динамической нагрузки с сеточными кривыми при Uc=1/2Uo (это кривая смещения -28V) и при Uc=1.5Uo (это кривая 84V) - получаем ещё 2 точки. Результаты записываем.

I1(при -28V)=0.086A

I2(при -84V)=0.042A

Гармонические составляющие анодного тока (практический интерес представляют вторая и третья гармоники) вычисляем по формулам

I1m=Imax+Imin+I1-I2/3=0,062

I2m=Imax+Imin-2Io/4=0.003

I3m=Imax-Imin-2(I1-I2)/6=0

Вычисляем соответствующие коэффициенты второй и третьей гармоники.

Кг2=(I2m/I1m)100%=4,84%

Кг3=(I3m/I1m)100%=0%

Надеюсь, что после приведенного расчёта Вам стало понятно, о чём я говорил выше. Коэффициент третьей гармоники, при Ra=2400 Ом, по расчёту получился равным 0%, к чему мы и стремились.

Конечно, Вы можете возразить, что реальные экземпляры ламп могут отличаться друг от друга и коэффициент третьей гармоники будет больше 0%. Да, с этим не поспоришь, но я абсолютно не сомневаюсь в том, что всё равно он будет небольшим.

Теперь пора определить коэффициент Альфа для этого усилителя.

Это очень важная величина, которая тесно связана с демпфированием акустики (об этом чуть ниже).

Коэффициент Альфа, есть отношение сопротивления первичной обмотки выходного трансформатора Ra (у меня 2400 Ом) к внутреннему сопротивлению выходной лампы строго в рабочей точке.

Находим его. Для этого продолжаем карандашом кривую сеточной характеристики -56 вольт вверх, чтобы получить точки при пересечении этой кривой и горизонтальных линий, ограничивающих рабочий диапазон «сверху» и «снизу». Из этих точек опускаем перпендикуляры на ось абсцисс.

Верхней точке соответствует 185V

Нижней точке соответствует 146V

Ток макс.=0,115А

Ток мин.=0,027А

Разница между этими напряжениями и токами позволит определить внутреннее сопротивление в рабочей точке.

Ri раб. точке=185-146/0,115-0,027=443 Ом

Альфа=Ra/Ri раб. точке

Вот теперь настал черёд объяснить, для чего может быть полезен вывод вторичной обмотки, рассчитанный на подключение нагрузки в 4 Ом (на схеме не показан).

Дело в том, что подключая акустику с сопротивлением 8 Ом к выводу выходного трансформатора, рассчитанного на подключение акустики, сопротивлением 4 Ом, Вы тем самым увеличиваете Ra ровно в два раза. То есть выходная лампа «видит» Ra, величиной уже не 2400 Ом, а 4800 Ом.

Естественно, альфа усилителя и коэффициент демпфирования, тоже увеличиваются в два раза. Таким образом, Вы можете выбрать вариант звучания, наиболее подходящий Вашим акустическим системам и Вашей комнате прослушивания. Понятное дело, что выходная мощность усилителя, при увеличении альфа, уменьшается, однако из-за возросшего коэффициента демпфирования, на слух изменения не очень заметны.

Если есть желание, Вы можете измерить реальное выходное сопротивление усилителя.

Для этого на середине звукового диапазона (например, 400-500 Гц) и на мощности 5-20% от максимальной, измерить переменное напряжение без нагрузки и с нагрузкой. Формула следующая.

Uхол. хода-Uпод нагр./Uпод нагр.=Rвых/Rнагрузки.

Если Вы предпочитаете теоретический расчёт, можно упрощённо рассчитать выходное сопротивление следующим образом (расчёт не учитывает активное сопротивление обмоток выходного трансформатора).

Выходной трансформатор имеет Ra=2400 Ом, сопротивление нагрузки Rн=8 Ом. Таким образом, имеем некий коэффициент, определяемый отношением Ra/Rн=2400/8=300.

Если теперь разделить сопротивление лампы в рабочей точке (443 Ом) на этот коэффициент, получим выходное сопротивление.

Rвых.=443/300=1,48 Ом. Для лампового усилителя, в отличие от транзисторного, имеющего очень малое значение выходного сопротивления, такая величина считается вполне нормальной. Обычно её значение составляет от 1 до 3 Ом.

Если Вы располагаете значением коэффициента трансформации, можно получить искомое значение выходного сопротивления делением сопротивления в рабочей точке на квадрат этого коэффициента. Это ещё один упрощённый способ.

Разделив значение сопротивления нагрузки (8 Ом) на выходное сопротивление (1,48 Ом), получим коэффициент демпфирования, о котором я говорил выше.

Кд=Rн/Rвых=8/1,48=5,41

Много это, или мало? Позволю себе привести цитату из старой (50-х годов прошлого века) статьи «Преувеличения и усилители» Уильямсона и Волкера: «Независимо от схемотехники выходного каскада, используя положительную обратную связь по току, можно получить любое значение выходного сопротивления, как равное нулю, так и отрицательное. Однако необходимо заметить, что оптимальное значение выходного сопротивления зависит от используемого громкоговорителя и, особенно, от его акустического оформления. Из этого следует что доктрина «чем больше коэффициент демпфирования, тем лучше» отнюдь не всегда обеспечивает лучшее качество звука».

Можно сказать иначе. Из-за разного во времени торможения диффузора динамика, в зависимости от выходного сопротивления усилителя, мы получаем разное звучание.

Катодный резистор для лампы 6С19П рассчитываем по формуле Rкат=Uo/Io=56/0,065=861,5 Ом (на схеме 860 Ом)

Вот, пожалуй, и весь расчёт оконечного каскада. Если Вы внимательно всё прочитали, то расчёт каскада на любой другой лампе не покажется сложным, важно только иметь хорошие графики АСХ и немного терпения.

Теперь приступим к рассмотрению особенностей схемы.

В первую очередь необходимо отметить очень большую суммарную ёмкость конденсаторов фильтра анодного источника (19100 мкф). Дело в том, что «энергетическая вооружённость» такого источника позволяет без всяких проблем воспроизводить очень громкие импульсные сигналы без просадки анодного напряжения.

Кроме этого, резонансная частота источника питания (F=1/2П, где L – индуктивность дросселя блока питания в Генри, С – ёмкость фильтра в Фарадах) при таких ёмкостях, оказывается достаточно низкой. Есть мнение, что для правильного тонального баланса в басу, она должна быть минимум раз в 5, а лучше в 10, ниже самой нижней рабочей частоты выходного трансформатора. В моём случае частота резонанса блока питания около 0,5 Гц, а нижняя частота выходного трансформатора 5 Гц. Т. е. условие выполняется. И, что тоже важно, при таких ёмкостях уровень фона минимален (практически трудно определяем).

Известный конструктор ламповых устройств – (автор усилителей «Маэстро Гроссо», «Триумвират» и многих других) предложил простую формулу для расчёта ёмкостей анодного источника.

Для каждого каскада минимальная ёмкость фильтров анодного источника вычисляется следующим образом.

Если величину тока брать в миллиамперах, а напряжение в вольтах, то величина ёмкости будет определяться в тысячах микрофарад. В моей схеме ток I – сумма токов оконечного и драйверного каскадов (поскольку нет резистора анодной развязки по питанию).

С треб = 50*Io/Eпит. Io - ток покоя каскада, Епит - напряжение питания каскада.

Физический смысл этого - обеспечение спада полки прямоугольного импульса длительностью в одну (1) секунду не более 2%.

Хочу сказать, что в различных источниках указан разный коэффициент (от 1 до 50), поэтому, какой применить – дело вкуса. Увеличивая ёмкость анодного источника, мы уменьшаем фазовые искажения на низких частотах, но до какого предела, вот в чём вопрос. Поэтому реальная ёмкость анодного источника в данной схеме может варьироваться в широких пределах (от 200,0 мкф до 20 000,0 мкф). Естественно, при её изменении, будет изменяться характер звучания усилителя, низ будет более глубоким и весомым при увеличении ёмкости. Но, если Ваши акустические системы не в состоянии воспроизводить достаточно низкие (ниже 40 Гц) частоты, имеет смысл не увлекаться чрезмерным увеличением ёмкостей анодного источника, соблюдая принцип разумной достаточности. В общем, слушайте и анализируйте.

Кстати сказать, отсутствие резистора анодной развязки по питанию, позволило избавиться от «лишней» фазосдвигающей цепочки, которая была бы образована этим резистором и анодной ёмкостью драйверного каскада.

Это ещё одна из особенностей данной конструкции.

Следующей особенностью можно назвать плавное (минимум в два раза) понижение частот срезов каскадов от выхода к входу, причём, для уменьшения фазовых искажений на низких частотах, частота среза самого низкочастотного (драйверного) каскада выбрана в районе 0,04 Гц (для триода 6С4П).

Абсурд, подумают многие. Ведь на реальных записях практически нет сигналов с частотами ниже 20 Гц. Да, этот так. Но, как показали практические эксперименты (мои и моих друзей), наши уши прекрасно слышат разницу в звучании, и чем ниже частота среза, тем звучание лучше.

В моём случае частоты среза каскадов выбраны следующим образам.

1) Выходной трансформатор – 5 Гц.

2) Выходной каскад на лампе 6С19П – 1 Гц.

3) Разделительная цепочка – 0,4 Гц.

4) Предварительный каскад на лампе 6С4П – 0,04 Гц.

На какую же примерную величину частоты среза самого низкочастотного (драйверного каскада) следует ориентироваться?

Самое лучшее звучание получается при равенстве постоянных времени анодной и катодной цепей (Тау), которые определяются как произведение соответствующих ёмкостей на сопротивление. Иными словами, должно выполняться условие

Ca*(Ra+Ri)=Cк*Rк, где Ca – ёмкость анодного источника каскада, Ra – величина резистора анодной нагрузки, Ri – внутреннее сопротивление лампы в рабочей точке, Ск – ёмкость в катоде лампы, Rк – величина резистора автоматического смещения.

В моём случае, величина сопротивления, определяющего постоянную времени анодной цепи, рассчитывается несколько сложнее. Дело в том, что из-за отсутствия резистора анодной развязки, постоянная времени анодной цепи - общая и для драйверного и для оконечного каскадов. Поэтому величина этого сопротивления определяется как суммарное сопротивление двух параллельных цепей, одной из которых является последовательная цепочка Ri лампы 6С4П (3,2 кОм) и резистора анодной нагрузки (8,1 кОм), а другой последовательная цепочка Ri лампы 6С19П (443 Ом) и сопротивление первичной обмотки выходного трансформатора (2400 Ом).

Иными словами 1/Rобщ.=1/11300 Ом+1/2843 Ом. Отсюда Rобщ.=2273 Ом.

Умножив величину этого сопротивления на ёмкость анодной батареи, получим постоянную времени анодной цепи. По расчёту получаем 43 секунды.

Теперь, зная эту величину, вычисляем необходимую ёмкость в катоде лампы драйвера. Для этого 43сек/192 Ом=0,223958 Ф=223958 мкф. На схеме указана ёмкость 180000 мкф. Дело в том, что эта ёмкость ориентировочная, и зависит, как Вы понимаете, от величины катодного резистора, подбираемого при настройке, в зависимости от конкретных экземпляров ламп. Величина этого резистора, для смещения равного 2,1 вольта, может быть в пределах от 180 Ом до 250 Ом. Иными словами, если у Вас окажется необходимым применить резистор с сопротивлением 250 Ом, то необходимая ёмкость будет уже 43/250=0,172Ф=172000 мкф.

Следующей особенностью является применение достаточно «низкоомного» регулятора громкости. Если Вы посмотрите на различные ламповые схемы, особенно прошлого века, то увидите, что величина этого резистора обычно несколько выше (22 кОм – 1 мОм).

Всё дело в том, что современные источники сигнала имеют, как правило, очень низкое выходное сопротивление (к примеру, мой CD проигрыватель Rotel RCD 02S имеет выходное сопротивление 100 Ом). Входное сопротивление следующего за ним каскада должно быть раз в 10 больше (чтобы не было просадки входного напряжения сигнала). Таким образом, в моём случае, можно было бы воспользоваться переменным резистором величиной 1 кОм. Если Вы посмотрите на величину тока входной цепи, то легко заметите, что при переменном резисторе, например, в 47 кОм, ток во входной цепи составит 2,1/47000=0,000044 А (2,1 вольта – смещение каскада), а при переменном резисторе 2,2 кОм, это же ток составит уже 2,1/2200=0,00095А, т. е. в 21,5 раза больше. Зачем же нам сознательно в 21,5 раза ослаблять удельную мощность сигнала? Очевидно, что с более «крупным» сигналом лампе предварительного каскада работать легче, поэтому и все тихие нюансы записи музыкальных фрагментов будут более различимыми. Если Ваш источник сигнала имеет достаточно низкое выходное сопротивление, то заменой всего лишь одного регулятора громкости можно добиться впечатляющего улучшения качества воспроизведения. Проверьте, и убедитесь в этом сами.

Несмотря на этот факт, хочу Вас предостеречь. Не стоит увлекаться чрезмерным уменьшением номинала этого резистора. Улучшение звучания будет происходить до какого-то предела, а затем оно снова станет ухудшаться. Для разных ламп его (резистора) значение будет разным, поэтому лучше начать с большего номинала, постепенно уменьшая его значение до оптимального. Кроме собственного слуха, в этом вопросе Вам мало кто поможет.

Ещё одной особенностью предварительного каскада является отсутствие резистора утечки в сетке входной лампы. Я сознательно отказался от этого дополнительного элемента в силу нескольких причин.

Во-первых, у проволочного переменного резистора типа ППБ, который я применил, открытая конструкция, и скользящий движок очень плотно скользит по сектору. Более того, пятно контакта у него достаточно широкое, т. е. опирание всегда происходит на несколько витков (3 или 4), поэтому контакт никогда не прерывается.

Во-вторых, ручку громкости почти не кручу (очень редко). Поставил один раз и всё. Это, если возникнет вопрос об износе сектора.

В-третьих, убирается ещё один элемент на пути звука.

Но, хочу Вас предупредить. Если будете повторять конструкцию, используя на входе другой переменный резистор (например, типа СП-1), то поставьте с управляющей сетки на землю резистор номиналом 200-300 кОм, защитив таким образом лампу. Дело в том, что у этих типов переменных резисторов контакт движка с неподвижной пластиной не очень хороший.

На Рис. 2 приведена схема усилителя, где в качестве драйвера вместо триода 6С4П применён пентод 6Ж8.

Каскад имеет ряд особенностей, о которых стоит поговорить отдельно.

Первая из них, как я уже говорил, отсутствие конденсатора, шунтирующего катодный резистор, пагубно влияющего на звучание. Понятно, что в этом случае возникает обратная связь, уменьшается усиление, растёт выходное сопротивление каскада и т. д. и т. п. Всё так, но, с моей точки зрения, практическое влияние этих факторов на звучание оказывается значительно меньшим, чем влияние конденсатора, даже если он приличного качества. Для любителей что-либо переключать могу порекомендовать тумблер, с помощью которого конденсатор можно быстро подключить или отключить.

Вторая особенность, не совсем традиционное включение конденсатора экранной сетки. Кроме некоторого увеличения усиления, такое включение, с моей точки зрения, улучшает звучание. Проверить это очень легко. Достаточно подключить конденсатор к катоду лампы (как у меня на схеме) или на общий провод. Разницу Вы услышите непременно.

Пару слов о самом конденсаторе экранной сетки C1. Как вариант, можно применить электролит, ёмкостью 20-100 мкф. Не обращайте особого внимания на величину этой ёмкости, она, как правило, выбирается с большим запасом. К примеру, частота среза цепи (R4,C1) при применении конденсатора, ёмкостью 100,0 мкф, составит 0,02 Гц. Такой выбор целесообразен при экономии места внутри корпуса усилителя, так как электролитический конденсатор имеет малые размеры.

Если габариты усилителя позволяют, то вместо него желательно применить плёночный или бумажный конденсатор, ёмкостью от 10 мкф на напряжение от 100 В.

Дело в том, что конденсатор экранной сетки влияет на качество воспроизведения низкочастотного диапазона. Бас становится более «собранным», пропадает некоторая гулкость и размытость, присущая звучанию электролитов. Из-за этого, как Вы понимаете, и средне-высокочастотный диапазон становится более «читаемым», в общем, одни плюсы.

Как вариант, можно применить отечественные конденсаторы К73-11

или их импортные аналоги серии CL20, рассчитанные на соответствующее рабочее напряжение. Они имеют относительно небольшие размеры при значительной ёмкости. А лучше всего, если есть такая возможность, применить фольговые пропиленовые конденсаторы известных фирм, несмотря на их приличную стоимость.

Очень много споров у конструкторов ламповых усилителей возникает при обсуждении организации питания экранной сетки пентода. Некоторые применяют стабилизаторы питания этой сетки, некоторые используют светодиоды и т. д. и т. п.

Не претендуя на истину в последней инстанции, я изложу своё мнение на этот счёт. Тут нужно сказать, что экранная сетка может питаться от общего источника анодного питания или отдельного, специально для этого предназначенного.

Вначале скажу о стабилизации питания экранной сетки при одном анодном (общем) источнике.

Мои эксперименты показали, что стабилизация питания экранной сетки маломощного пентода не улучшает звучание. Вся чистота и мягкость середины и верха уходят, оставляя взамен жесткое и аналитичное звучание.

Наверное, всё же, мне нравится красивое звучание, а не точное.

Теперь о раздельном питании.

Есть мнение, что лучше всего питать экранную сетку от отдельного стабилизированного источника (отдельная обмотка на трансформаторе - далее стабилизатор).

Вывод неутешителен, звучание при этом опять же ухудшается. Так, как и в первом случае, оно становится жёстким и каким-то механистичным, хотя наверняка, найдутся любители такого звука.

Скорее всего, меры по стабилизации питания экранной сетки нужны для мощных выходных пентодов, так как в различных источниках (книги, журналы) разными авторами при этом отмечается улучшение звучания. С мощными пентодами я экспериментов не проводил, это отдельная тема.

Поэтому, при использовании маломощных пентодов:

1) Стабилизировать питание экранной сетки не нужно.

2) Анод и экранная сетка должны быть запитаны от одного (общего) источника.

Повторюсь, это только моё мнение, но, если Вы захотите попробовать вариант со стабилизатором экранной сетки, то необходимо произвести следующие манипуляции.

Вместо конденсатора С1 устанавливаем стабилитрон, с напряжением стабилизации 100 вольт (например, КС 600А), а номинал резистора R4 уменьшаем до 22-24 кОм. Шунтировать этот стабилитрон конденсатором или нет, решите сами, попробовав оба варианта. Суммарный ток (стабилитрона и экранной сетки), протекающий через резистор R4, должен быть около 6 ма.

Вот и все изменения.

Статья была бы неполной, если обойти вниманием тему быстродействия каскадов усилителя. Большую помощь в написании этой части оказал наш коллега, В. Большаков из Ярославля, за что ему отдельная благодарность. Этот параметр, как показала практика, тоже является достаточно важным для достижения высококачественного звучания.

Я позволю себе поговорить о быстродействии каскадов усилителя в свете новомодной теории ПСН (приведенной скорости нарастания) и классической, общепринятой (по Mh – ослаблению на верхней граничной частоте рабочего диапазона), так как этот вопрос представляет интерес для достаточно большого числа радиолюбителей. Думаю, что не нужно объяснять, что чем меньше ослабление Mh, тем быстродействие выше (это для тех, кто не видит связи между ПСН и Mh).

Термин скорость нарастания сигнала пришел к нам из цифровой техники и численно показывает, до какого напряжения может вырасти передний фронт импульса за 1 мксек. В звуковой технике он характеризует скоростные характеристики усилителя, его быстродействие, способность передавать музыкальные сигнала с крутыми фронтами, например, удар барабана бочки, щипок струны контрабаса, электронная музыка. В операционных усилителях она превысила несколько тысяч, для ламповой технике показатель 24, уже хороший результат. Высокой скорости нарастания мешают очень большие динамические емкости ламп, кабелей и выходных трансформаторов.

Скорость нарастания сигнала численно равна току, который заряжает емкость, деленному на эту емкость. Математически это выглядит так:

S. R. = [ А, Ф ]

Из этой формулы легко вычислить каждый член, например амплитуда тока равна:

Im = S. R. * Cдин

В 1997 г. в своих трудах Вальтер Юнг (Walter Jung) предложил скорость нарастания сигнала считать так:

6,28 * fв * Eам

S. R. = [ в/мксек ]

Например, для верхней частоты 87000 Гц при амплитуде напряжения 124,2 В S. R. равна 67,858 в/мксек. И он же предложил иметь пятикратный запас, при котором не будет проблем с передачей сигнала, т. е. нарастание скорости должно идти от выхода к входу. Это значит, что у драйвера она должна быть в 5 раз выше.

Однако расчет по скорости нарастания для сравнения каскадов между собой не совсем удобен, поэтому предложил привести скорость нарастания к 1 вольту, т. е. S. R./Um, которую и назвал приведенной скоростью нарастания (ПСН). При приведении вольты уничтожаются, и размерность выглядит, как 1/мксек. К какой же приведенной скорости нарастания сигнала нужно стремиться, конструируя усилитель? Практические измерения скорости нарастания сигнала показали, что у самого быстрого музыкального инструмента, клавесина, она оказалась равна 0,11 1/мксек.

Очевидно, что скоростные характеристики усилителя не могут быть хуже этой величины.

По мнению Ю. Макарова, максимальная ПСН должна быть на входе усилителя, и, далее, она должна уменьшаться (предлагается ступенчатое, минимум в два раза, покаскадное уменьшение) до минимальной (но достаточной) на выходе.

В принципе, метод расчёта по ПСН, позволяет быстро «прикинуть» параметры каскада на предмет быстродействия. Поделил амплитуду тока на ёмкость, затем на амплитуду напряжения - получил некую цифру. Разделил на 2Пи - получил частоту.

Однако само по себе это быстродействие не является единственным критерием для оценки качества звучания усилителя.

Тут каждому своё. Одному нравится тёплое и окрашенное звучание (очень комфортное на слух), другому аналитичное и неокрашенное (как у Макарова) и т. д. и т. п.

Само по себе понятие "качества звучания" очень относительно, так как уши у всех разные.

Ответ на вопрос, удачна она (попытка) или нет - у каждого свой.

Для тех, кто заинтересуется расчётом каскадов при помощи ПСН, я покажу, как это делается.

Итак, в качестве примера, рассчитаем ПСН на выходе драйверного каскада, выполненного на лампе 6Ж8.

4,32/0,04/56=1,93 1/мксек, что в пересчёте на частоту составит 383871 Гц (по уровню -0,17дБ).

Поясню размерность величин:

4,32 ма – амплитуда тока на выходе драйвера (6Ж8)

Приблизительно, её величина составляет 0,8 от анодного тока лампы (5,4 ма)

0,04 – так выглядит в расчёте 40 пФ - суммарная входная ёмкость лампы 6С19П, которую мы рассчитали вначале статьи.

56 В – амплитуда напряжения на выходе каскада драйвера.

307324 Гц – граничная частота, получаемая делением ПСН на 2Пи.

Теперь представьте, что мы применили другую выходную лампу с суммарной входной ёмкостью, например, 200 пФ.

Смотрите, что у нас получится.

4,32/0,2/56=0,386 1/мксек, что в пересчёте на частоту составит 61419 Гц, т. е. в 5 раз меньше.

Помните, вначале статьи я сказал, что суммарная входная ёмкость лампы 6С19П мала, и это облегчает выбор лампы драйвера? Так вот, посмотрев расчёт, теперь можно легко понять, что ПСН растёт с увеличением амплитуды тока и (или) с уменьшением суммарной входной ёмкости (которая зависит от типа применённой лампы). Хорошо, если эта ёмкость невелика (как у лампы 6С19П). Небольшая суммарная входная ёмкость такой лампы позволяет при сохранении приемлемой ПСН, применять лампы драйвера с небольшим током покоя.

Для сравнения, ПСН=3,96 1/мксек для каскада на 6С4П (на выходе каскада), и, кажется, что это очень хорошо. Однако при расчёте оказывается, что из-за гораздо меньшей суммарной входной ёмкости пентода, по сравнению с триодом, у лампы 6Ж8 почти в 2 раза выше ПСН на входе, по расчёту 3,47 1/мксек против 1,8 1/мксек у 6С4П.

Усилитель в целом по ПСН:

3,47 на входе; 1,93 на выходе драйвера; 0,9 на выходе оконечного каскада. Это для лампы 6Ж8 в драйвере.

1,8-3,96-0,9 для 6С4П в драйвере.

Вот и получается, что вариант с лампой 6Ж8 согласуется лучше со всеми постулатами этой теории: максимальная ПСН (3,47) на входе, затем она уменьшается (до 1,93) на выходе драйвера, минимальная (0,9), но, достаточная (вспомните про клавесин), на выходе оконечного каскада.

Теперь несколько слов о другом способе расчёта по Mh (ослаблению на верхней граничной частоте). Так вот, этот расчёт учитывает и внутреннее сопротивление лампы, и величину анодной нагрузки, и входную динамическую ёмкость Миллера, и, наконец, частоту, на которой Вы хотите посмотреть ослабление. С моей точки зрения, он, более адекватен.

Математически, формула расчёта выглядит так:

Mh дБ=20*LOG(((Rout/Rc)+1);10) где

Rout – выходное сопротивление драйвера кОм=Ri*Ra/Ri+Ra

Rc – реактивное сопротивление кОм=1000000/(2Пи()*Fверх. кГц*Смил. пф)

Ri – внутреннее сопротивление лампы

Ra – величина анодной нагрузки

Более того, на специализированных сайтах в Интернете, есть бесплатная программа (таблица в Excel) для расчёта по Mh (автор Юхневич и Манаков), которая практически очень быстро позволяет определить затухание на верхней частоте рабочего диапазона, исходя из типов применённых ламп, конкретных режимов их работы и выбранной верхней частоты.

Какой способ расчёта применить, классический или по ПСН, решайте сами. Как Вы понимаете, классический расчёт намного увеличивает шансы применения так называемых «малотоковых» ламп (например, 6Г7, 6Н9С, 6Н2П и т. д. и т. п.) в драйвере. И, напротив, расчёт по ПСН резко сужает круг ламп, предназначенных для работы в драйвере. На передний план выходят лампы, обеспечивающие большую амплитуду тока (например, 6С45П, 6С15П, 6П9 и т. д.).

1) Отдельного внимания заслуживает вопрос о включении разделительного конденсатора, согласно направлению. В прошлых статьях я не сказал об этом. Понятное дело, что в качестве разделительного мы применяем не «электролит» и он всё равно будет работать, как его не поставь, но как показала практика, на звучание это оказывает большое влияние. Конденсатор, включённый в «правильном» направлении, обеспечивает лучшую детальность и ясность, что, в свою очередь, является важным положительным моментом.

Физический смысл этого заключается в следующем. Конденсатор, как известно, мотается в рулон из двух полосок фольги. Как Вы понимаете, одна из обкладок всегда оказывается внешней, а вторая внутренней, спрятанной внутри неё. Внешняя обкладка одновременно является экраном для внутренней. Так вот, эту внешнюю обкладку будет правильно и логично подключить к точке схемы с меньшим импедансом (аноду драйвера), а внутреннюю обкладку, к точке с бОльшим импедансом (сетке выходной лампы).

На конденсаторах типа Дженсен, с одной стороны нанесена черта, на других, типа Мультикап, черты нет, только надпись.

Если Вы применяете Дженсен, то черта (это и есть метка внешней обкладки) должна находиться со стороны драйвера, тут всё просто и понятно, а если другой конденсатор, то придётся повозиться.

О том, как определить вывод конденсатора, подключённый к внешней обкладке, очень хорошо написал наш коллега, конструктор Олег Чернышёв из Ярославля.

Цитирую Олега:

Вот передо мной лежит конденсатор К40У-9 0.1мкФх400В. У него внешняя металлическая оболочка, и это сильно упрощает дело. Условно обозначим левый вывод "А", правый - "В". Подключаю к выводам генератор и подаю сигнал 500Гц 10В RMS. Подключаю осциллограф землёй к выводу "А". Щуп без делителя, входное сопротивление - 1МОм. Касаюсь щупом оболочки конденсатора. Вижу смесь из сигнала 500Гц и фона 50Гц. Чтобы убрать фон, касаюсь пальцем земли осциллографа, измеряю уровень сигнала 500Гц. Амплитуда - примерно 1.2В. Перекидываю землю осциллографа на вывод "В" и делаю там всё то же самое. Там амплитуда сигнала 0.45В. Теоретически, должно быть гораздо меньше, но не будем мелочиться. Делаем вывод, что вывод "В" подключен к внешней обкладке. Водостойким маркером помечаем его знаком "+". В будущем он будет подключен к аноду драйвера.

С этим конденсатором разобрались, но в мой усилитель пойдут другие, а у них нет металлической оболочки. Надо сделать из кусочка фольги, да вот незадача - перерыл весь дом, не могу найти таковой. Обычно под диваном обёртки от конфет бывают, а сейчас нет. Побегу в магазин...-

Как видите, способ достаточно простой и эффективный, и каждый из нас может им воспользоваться.

Позволю себе немного поговорить и о типах конденсаторов, применяемых в качестве разделительных. На моих схемах Вы видите два типа, это Мультикап и Дженсен. Дело в том, что данные типы конденсаторов давно и с успехом применяются в ламповых усилителях, обеспечивая (в любом случае) высококачественное звучание. Но, я совершенно не настаиваю на их применении. Более того, для некоторых из нас (я в их числе), звучание Multicap RTX, PPFX-S и т. д. покажется излишне ярким и излишне детальным. Очень хорошо высказался по поводу применения таких конденсаторов, в качестве разделительных, наш коллега, конструктор Михаил Андронов из Риги.

По поводу RTX могу сказать, что это действительно высококлассные конденсаторы. Поначалу я тоже ими сильно увлекался, но постепенно понял, что они больше подходят для пристального разглядывания музыки, а для наслаждения ею лучше другие.-

Поэтому, не бойтесь экспериментировать с типами конденсаторов и их сочетаниями, соединяя параллельно несколько типов. Недостатки одного типа могут быть компенсированы достоинствами другого. Нужно лишь подобрать тип и величину ёмкости. Мне, например, очень нравится звучание «бутерброда», состоящего из основного конденсатора Jantzen Superior Z-cap, ёмкостью 1,0 мкф*800В и шунтирующего его алюминиевого Дженсена, ёмкостью 0,22 мкф*630В. Я знаю конструкторов усилителей, которые с успехом применяют отечественные конденсаторы серии МКВ, "разутые" К75-10, К40У-9, импортные Мундорфы и т. д. и т. п., всех не перечислить. Конечно, некоторое количество времени придётся потратить на эти эксперименты, но результатом будет звучание, к которому Вы стремились.

По этому вопросу мнения разделены на диаметрально противоположные. Некоторые уважаемые конструкторы, например, считают, что каждый проводник имеет направленность. На его сайте описан метод определения этой направленности и указано, как включать провода в конкретной схеме.

Другие, не менее уважаемые, конструкторы отвергают это утверждение, считая его своего рода шаманством.

Чтобы не вступать в полемику, я изложу своё мнение на этот счёт.

Известно, что некоторые фирмы (например, Ecosse) указывают направление сигнала для своих проводников, а некоторые (например, Kimber) считают, что их провода не имеют направленности. Известно также, что в процессе работы, провода прирабатываются, приобретая эту самую направленность. Поэтому монтаж выполняем проводами, которые по заявлению производителя, не имеют направления. Пусть они сами со временем приобретут его.

Теперь о типах проводов. В моих конструкциях применяется два вида. Для входных цепей (от входного разъёма до первой лампы) применена перевитая моножила Nordost Wyrewizard Dreamcaster, диаметром 1 мм. Для всех остальных цепей применяется многожильный Kimber серии TC. Оба этих вида проводов, по заявлению производителей, не имеют направленности.

К слову, большое влияние на звучание оказывают провода, идущие от силового трансформатора на накальную обмотку кенотрона и провода входной цепи. Все остальные, включая накальные других ламп, тоже оказывают влияние, но в меньшей степени.

Не подумайте, что я настаиваю на применении именно таких проводов. У всех из нас разные возможности. Поэтому поэкспериментируйте с ними, возможно, в Вашем варианте усилителя будут применяться другие типы.

Например, во входных цепях прекрасно работают медные обмоточные провода, диаметром 0,6-1,0 мм, нужно только изолировать их друг от друга, к примеру, шнурком от обуви.

3) Резисторы анодных и катодных цепей.

Хочу сказать, что я много экспериментировал с типами резисторов в аноде и в катоде. Критерий - звучание. Смотрите, что получилось.

В аноде наилучшие результаты у проволочных типа С5-5 или ПТМН. Заявления некоторых конструкторов о том, что данные типы резисторов имеют большую индуктивность и, соответственно, негативно влияют на звучание, с моей точки зрения, не состоятельны.

Автор очень многих ламповых конструкций - , имея удостоверение метролога , в своё время измерял и сравнивал индуктивности резисторов разных типов. Вы удивитесь, но наибольшей индуктивностью обладают 2х ваттные резисторы типа ВС. Как говорится, комментарии излишни.

В катодах лучше всего себя показали углеродистые или боруглеродистые резисторы типа ВС, Р1-71, БЛП.

4) Плавное включение.

Вы видите, что на схеме указаны очень большие ёмкости анодного источника питания. Для того чтобы исключить бросок тока во время включения и поберечь кенотрон (ведь многие используют раритетные и дорогие приборы), необходимо обеспечить плавный заряд этих ёмкостей. Решить этот вопрос можно достаточно просто.

Параллельно контактам тумблера "анод" устанавливаем мощный, 10-15 Вт, резистор 1,0-5,0 кОм (на схемах не показан). Включаем сеть, тумблер «анод» пока разомкнут, но, в схемах с автоматическим смещением (варианты с лампой 6С19П), средняя точка анодной обмотки соединена с корпусом через этот резистор. По мере накала кенотрона, зарядка ёмкостей до какого-то значения (например, до 50-100 вольт), происходит маленьким током, так как бросок тока резистор ограничивает. Для кенотрона такой ток безопасен.

В усилителе (третий вариант), где в качестве выходной лампы, применяется пентод 6П31С с фиксированным смещением, этот тумблер стоит в разрыве «плюсового» провода источника питания, так как фиксированное смещение должно подаваться на сетку лампы сразу после включения в сеть, т. е. до подачи полного анодного напряжения.

Через некоторое время, достаточное для прогрева нитей накала ламп (1-3 минуты) включаем тумблер "анод", тем самым «закорачивая» резистор. Напряжение плавно поднимается дальше до своего значения (230 вольт).

Ну вот, теперь настал черёд привести третий вариант усилителя, выполненный на лампе 6П31С. ВАХ лампы приведены на рисунке.

Как Вы видите, лампа очень линейна, что не удивительно. Лампы, специально разработанные для схем строчной развёртки телевизоров, а 6П31С именно такая лампа, в большинстве своём просто обязаны быть линейными. Дефекты изображения заметны очень сильно, поэтому высокий вакуум, хорошо продуманная конструкция, высокая рассеиваемая мощность, очень большая электрическая прочность, надёжность и долговечность, а также высокое качество изготовления этих приборов гарантированы. Всё это благотворно сказывается и при использовании этих ламп в звуковом тракте. Поэтому не бойтесь применять телевизионные лампы в своих конструкциях, многие из Вас при этом будут приятно удивлены результатом.

Схему усилителя Вы видите на рисунке.

Естественно, она имеет ряд особенностей, о которых нужно сказать отдельно.

Как Вы видите, смещение выходного каскада фиксированное. Применение фиксированного смещения, в данном случае, улучшает артикуляцию , особенно в низкочастотном диапазоне. Как сказал один из наших коллег, мой друг – Михаил Дмитриенко г. Москва, фиксированное смещение «даёт более разнообразное чтение ритмов».

Но, часто у конструктора усилителя не оказывается дополнительной обмотки силового трансформатора для реализации такого вида смещения. Не беда. Посмотрите на схему и обратите внимание на один из вариантов реализации фиксированного смещения от анодной обмотки.

Теперь о режимах.

На аноде лампы напряжение 225В, смещение 37В, ток 0,07А.

В этом режиме Ri в раб. точке, порядка 690-700 Ом.

Выходное сопротивление усилителя примерно 2,3 Ом.

К демпфирования 3,5.

Ещё одна особенность. По справочнику максимальная рассеиваемая мощность лампы 6П31С составляет 14 Вт, а в моём случае эта мощность около 16 Вт. Ничего страшного. Дело в том, что оригиналы 6DQ6-B (GE), с которых копировались наши 6П31С, имеют Pa=18 Вт. Некоторые наши коллеги, проводили эксперименты с лампами 6П31С, рассеивая на аноде до 20 Вт. Никаких нареканий.

Резистор R доп. в катоде лампы 6П31С вспомогательный. Удобно контролировать ток через лампу во время настройки по падению напряжения на этом резисторе. Падению напряжения 0,7 В на резисторе 10 Ом будет соответствовать ток 0,7/10=0,07А=70ма. После настройки резистор можно убрать или «закоротить».

Драйвер я оставил прежний, 6Ж8 в пентоде, катодный резистор не шунтирован конденсатором. Усиление драйвера около 42. Чувствительность всего усилителя получилась около 0,85В.

Ну что сказать. При сохранении фундаментальности баса, несмотря на Альфа=3,5, удивительная прозрачность и воздушность на СЧ и ВЧ, по сравнению с 6С19П. Ну, так и хочется сравнить средне-высокочастотный диапазон с прямонакалами 6С4С и т. д. Низкочастотный диапазон при этом ничуть не страдает, он более весом и глубок, по сравнению с 6С4С.

Вот и получается, что не Альфой единой..., тем более что её можно легко увеличить в два раза, используя 4х-омный вывод выходного трансформатора, о чём мы говорили несколько ранее.

В общем, звучание 6П31С мне очень понравилось. Оно, как бы сказать, душевнее, что ли, по сравнению с 6С19П. Попробуйте и сравните. Выбор за Вами.

В заключение, необходимо сказать, что все схемы являются тщательно отработанными конструкциями. Несмотря на отсутствие стабилизаторов анодного и иных источников, усилители работают очень устойчиво и практически не изменяют звучания при колебаниях сетевого напряжения в пределах 10%. Поэтому, если Вы захотите их повторить, будет достаточно придерживаться указанных на схеме напряжений в контрольных точках.

Если Вы обладаете лампами 6SJ7 (это зарубежный аналог 6Ж8), смело применяйте их. Звучание от этого только улучшится. Ничего переделывать при этом не нужно.

Как всегда, отдельная благодарность моим друзьям – (gegen48(dog)*****), за консультации при подготовке статьи, и

Д. Андрееву (ada_optika(dog)*****) за изготовление высококачественных моточных изделий (трансформаторов, дросселей) по моему заказу.

Вот и всё. Выбирайте вариант, соответствующий Вашим музыкальным предпочтениям, и слушайте музыку на здоровье. Уверен, что Вы не пожалеете о затраченном на изготовление усилителя труде и времени.

С уважением, Вадим Пузанов, г. Брянск.

 

Возможно, будет полезно почитать: