Как измерить вольтметром переменного напряжения постоянное напряжение. Измерение напряжения. Вольтметры амплитудных значений

Цель работы - исследование метрологических характеристик электронных вольтметров

Ознакомиться с используемой аппаратурой и инструкциями по ее применению. Получить у преподавателя конкретное задание по выполнению работы.

Определить основную погрешность электронного вольтметра на диапазоне измерений, указанном преподавателем. Построить на одном графике зависимости относительной и приведенной погрешностей от показаний электронного вольтметра. Сделать вывод о соответствии поверяемого вольтметра своему классу точности.

Определить амплитудно-частотную характеристику АЧХ электронного вольтметра. Построить график АЧХ и определить рабочую полосу частот вольтметра на уровне затухания АЧХ, определяемом нормативно-технической документацией на поверяемый вольтметр.

Экспериментально оценить АЧХ цифрового вольтметра. Провести сравнительный анализ амплитудно-частотных характеристик электронного, цифрового и электромеханического 11 Примечание 1 . Результаты исследований по электромеханическим вольтметрам взять из лабораторной работы №1, если она предварительно выполнялась. вольтметров. Построить графики АЧХ исследуемых приборов.

Измерить электронным вольтметром напряжения различной формы (синусоидальной, прямоугольной и треугольной) с одинаковой амплитудой на частотах, лежащих в рабочей полосе частот этого прибора. Объяснить и подтвердить расчетами полученные результаты. Сделать вывод о влиянии формы измеряемого напряжения на показания электронного вольтметра.

Описание и порядок выполнения работы

Используемые приборы

Электронный вольтметр с аналоговым выходом - GVT-417В

Прибор измерительный универсальный с цифровой индикацией - GDM-8135

Генератор гармонических сигналов - SFG-2120

Осциллограф электронный - GOS-620

Описания приборов прилагаются на стенде .

Для выполнения работы применяют схему, представленную на рис. 2.1, где ГС - генератор (синтезатор) сигналов синусоидальной, прямоугольной и треугольной формы,ЦВ - цифровой вольтметр, ЭВ - электронный вольтметр, ЭЛО - электронно-лучевой осциллограф.

1. Основную погрешность электронного вольтметра определяют методом сличения, т.е. сравнением его показаний с показаниями образцового, в данном случае цифрового вольтметра, при синусоидальном напряжении. Показания образцового вольтметра принимаются за действительные значения напряжения.

Поверку электронного вольтметра GVT-417B проводят при частоте 1кГц на шкалах с верхними пределами 1В или 3В, что обусловлено диапазоном регулирования выходного напряжения используемого генератора.

Поверку проводят для n = (610) отметок шкалы, равномерно распределенных по шкале прибора, при плавном увеличении и уменьшении его показаний

Поверяемые точки напряжения U п устанавливают на поверяемом электронном вольтметре, а действительные значения напряжений U о ув, U о ум снимают с образцового цифрового вольтметра соответственно при подходе к поверяемой отметке U п шкалы при увеличении и уменьшении показаний.

Результаты измерений и расчетов представляют в виде таблицы.

Абсолютную, относительную, приведенную погрешности и вариацию показаний определяют по формулам, приведенным в лабораторной работе 1 или в ; определяют также максимальную приведенную погрешность max = Мах{| i |} и максимальную вариацию H max = Мах{H i }, полученные в результате эксперимента.

По результатам испытаний и расчетов строят на одном графике зависимости относительной и приведенной погрешностей от показаний электронного вольтметра, = F (U п), = F (U п); на графике также проводят линии, определяющие границы предельно допустимой приведенной погрешности, соответствующей классу точности поверяемого прибора.

На основании анализа данных об основной погрешности и вариации показаний делают вывод о соответствии указанных характеристик требованиям, определяемым классом точности поверяемого прибора.

2. Амплитудно-частотную характеристику электронного вольтметра определяют как зависимость показаний вольтметра от частоты входного синусоидального сигнала при постоянном значении его напряжения.

На практике широко используют понятие рабочей полосы частот средства измерений. Под рабочей полосой частот вольтметра понимают диапазон частот f , для которого неравномерность АЧХ вольтметра не превосходит некоторой заранее установленной допустимой величины. Так, для электронного вольтметра GVT-417B в пределах рабочей полосы допускается не более чем 10-ти процентное изменение показаний прибора от показания на частоте f 0 = 1КГц.

Крайние значения диапазона частот, удовлетворяющего указанному требованию, называются нижней f Н и верхней f В граничными частотами рабочей полосы электронного вольтметра.

Определение АЧХ проводят также по схеме, представленной на рис. 2.1. В качестве источника сигналов используют генератор SFG-2120, который обеспечивает постоянство амплитуды выходного сигнала при изменении частоты в его рабочем диапазоне.

Предварительно на генераторе ГС устанавливают частоту f 0 =1кГц при синусоидальной форме сигнала. С помощью регулятора выходного напряжения генератора ГС устанавливают показание электронного вольтметра на отметке шкалы в диапазоне (0.7-0.9) от верхнего предела измерений и записывают установленное значение напряжения U П (f 0 =1кГц) = … .

В дальнейшем при определении АЧХ изменяют только частоту генератора сигналов ГС, а напряжение, снимаемое с генератора, не изменяют.

Для контроля уровня сигнала и его формы используют электронно-лучевой осциллограф. На экране осциллографа, путем выбора коэффициентов (VOLTS/DIV) отклонения и коэффициентов (TIME/DIV) развертки, получают удобную для наблюдений и измерений осциллограмму - изображение нескольких периодов синусоиды с достаточно большой амплитудой; записывают амплитуду l А (или l 2А - двойную амплитуду) изображения сигнала для последующего контроля уровня сигнала.

АЧХ удобно определять отдельно для области верхних и области нижних частот.

В области верхних частот АЧХ начинают снимать с шагом 100 кГц: 1 кГц (начальная частота), 100 кГц, 200 кГц, … до частоты, при которой показания электронного вольтметра упадут до величины порядка 0,8-0,9 от первоначально установленного показания U П (f 0 =1кГц). Для уточнения верхней частоты f в рабочей полосы частот f электронного вольтметра в районе 10-ти процентного спада АЧХ необходимо дополнительно снять несколько точек АЧХ с меньшим шагом изменения частоты входного сигнала.

В процессе проведения испытаний постоянный уровень выходного сигнала ГС контролируют электронным осциллографом.

Результаты испытаний и расчетов записать в таблицу:

Для ЭВ f В = … для ЦВ f В = …

где U П (f ) - показания вольтметра на частоте f ; K (f ) = U П (f ) /U П (f о = 1 кГц) - АЧХ вольтметра, представленная в относительных единицах для соответствующих частот, f в - верхняя граничная частота рабочей полосы вольтметра, найденная в эксперименте.

При выполнении задания аналогичным образом при тех же частотах оценивается АЧХ цифрового вольтметра. Результаты испытаний заносятся в ту же таблицу. Поскольку в данной работе требуется сравнить рабочие полосы частот электронного и цифрового вольтметров в качественном смысле, не обязательно уточнять АЧХ цифрового вольтметра в дополнительных точках по частоте. При этом значения граничных частот цифрового вольтметра будут определены с меньшей точностью.

Нижняя граничная частота f н рабочей полосы f для электронных вольтметров переменного тока обычно находится в области единиц и первых десятков Гц. Поэтому процедура определения АЧХ в области нижних частот может быть следующей: сначала уменьшают частоту от исходной f 0 =1000Гц через 200Гц, а затем от 50Гц - через 10Гц. При необходимости уточняют нижнюю частоту f н рабочей полосы, при которой АЧХ падает до уровня 0.9 от ее значения при f 0 =1000Гц, снятием дополнительных точек с шагом 1Гц.

Оценка АЧХ цифрового вольтметра проводится при тех же частотах.

Результаты испытаний и расчетов представляют в виде таблицы:

Для ЭВ f н = …Гц, для ЦВ f н = …Гц.

По результатам проведенных исследований строятся графики АЧХ для верхних и нижних частот. По оси частот графики удобно строить в логарифмическом масштабе.

3. Определение влияния формы входного сигнала на показания вольтметров переменного тока.

В электронных вольтметрах переменного тока применяют преобразователи Пр переменного напряжения в постоянное, как, например, показано на рис. 2.2, где: u вх (t ) - входное напряжение, У - усилитель переменного тока, ИМ - магнитоэлектрический измерительный механизм, - угол отклонения измерительного механизма.

Используют преобразователи амплитудного, средневыпрямленного или действующего значений переменного напряжения в постоянное. В то же время все электронные вольтметры переменного тока, не зависимо от вида преобразователя, градуируются в действующих значениях синусоидального напряжения . Это может привести к появлению дополнительных погрешностей при измерении несинусоидальных напряжений.

Электронный вольтметр GVT-417B имеет преобразователь средневыпрямленного значения. Для таких вольтметров угол отклонения указателя пропорционален средневыпрямленному значению U ср входного напряжения

где: k V - коэффициент преобразования вольтметра, u вх (t ) - входное переменное напряжение с периодом Т .

Показания U п вольтметра градуируются в действующих U значениях синусоидального напряжения

где: k Ф = U /U СР - коэффициент формы напряжения, для синусоидального напряжения k Ф = 1,11. Следовательно, для другой формы напряжения (k Ф? 1,11) показания вольтметра могут значительно отличаться от его действующего значения, что приводит к появлению дополнительной погрешности результата измерений.

В таких случаях искомые напряжения при известной форме сигналов можно находить расчетным путем.

Исходя из принципа действия вольтметра и принятой градуировки можно по показаниям U П прибора определить средневыпрямленное значение любого (в пределах АЧХ вольтметра) измеряемого напряжения

U СР = U П /1,11.

Действующее значение U несинусоидального напряжения может быть определено только в том случае, когда известен коэффициент k Ф формы кривой напряжения, k Ф = U/ U СР (или известна форма сигнала, по которой может быть определен этот коэффициент)

U= k Ф U СР.

Численные значения коэффициентов формы для некоторых сигналов представлены в таблице.

Для экспериментальной оценки влияния формы напряжения на показания электронного вольтметра последовательно измеряют сигналы синусоидальной, прямоугольной и треугольной формы при их одинаковой амплитуде.

Предварительно на синусоидальном сигнале устанавливают показания вольтметров в диапазоне 0.5 - 0.6 от верхнего предела измерений выбранной шкалы при номинальной частоте f н =1 кГц , а затем при той же амплитуде входных сигналов измеряют вольтметром напряжения при других формах сигнала. Формы сигналов (синусоидальная, треугольная, прямоугольная) устанавливается нажатием на клавишу “Wave ” на генераторе.

По показаниям U П вольтметра определяют среднее U СР и действующее U значения напряжений для всех форм сигналов.

Для оценки влияния формы напряжения на показания электронного вольтметра с преобразователем средневыпрямленного напряжения определяют дополнительную относительную погрешность (в процентах)

100(U П - U )/ U .

Результаты измерений и расчетов записывают в таблицу.

Следует заметить, что дополнительная погрешность войдет в результат измерений, если действующие значения напряжений несинусоидальной формы определять непосредственно по показаниям вольтметра без учета формы сигнала и проведения соответствующих расчетов.

По результатам исследований сделать вывод о влиянии формы кривой напряжения на результаты его измерения электронным вольтметром.

Литература

Метрология, стандартизация и сертификация: учебник для студ. высш. учеб. заведений/[Б.Я.Авдеев, В.В.Алексеев, Е.М.Антонюк и др.]; под ред В.В.Алексеева. - М. : Издательский центр «Академия», 2007. стр. 136-140.

Б. Григорьев (СССР)

Важнейшая характеристика переменного напряжения (тока)-его среднеквадратическое* значение (СКЗ). Знать истинное СКЗ необходимо при определении мощности или энергетических соотношений в цепях переменного тока, измерении шумовых характеристик устройств и коэффициентов гармонических или интермодуляционных искажений, налаживании тиристорных регуляторов мощности. Сочетание «истинное СКЗ» было употреблено здесь не случайно. Дело в том, что измерить СКЗ сложно, поэтому вольтметрами (самостоятельными или включенными в состав мультиметров) обычно измеряют либо среднее выпрямленное, либо пиковое значение переменного напряжения. Для напряжения синусоидальной формы, а оно чаще других встречается в практике измерений, есть однозначная связь между этими тремя значениями СКЗ: пиковое в 1,41 раза больше, чем СКЗ, а среднее выпрямленное в 1,11 раза меньше его. Поэтому вольтметры широкого применения практически всегда откалиброваны в СКЗ независимо от того, что на самом деле регистрирует данный прибор. Следовательно, при измерении СКЗ переменных напряжений, форма которых заметно отличается от синусоидальной, пользоваться этими вольтметрами в общем случае нельзя, однако для периодических сигналов несложной формы (меандр, треугольник и т. п.) можно вычислить поправочные коэффициенты. Но этот способ неприемлем для наиболее важных в практике измерений (в частности, и тех, что упоминались выше). Здесь на помощь может прийти только , регистрирующий истинные СКЗ переменного напряжения.

Длительное время для измерения СКЗ использовались методы, основанные на преобразовании переменного напряжения в постоянное с помощью термоэлектронных приборов. В модернизированной форме эти методы применяются и сейчас. Однако все более широкое распространение получает измерительная аппаратура, представляющая собой специализированные аналоговые вычислительные устройства. По той или иной математической модели они обрабатывают исходный сигнал так, чтобы продуктом обработки было его СКЗ. Этот путь, даже с учетом успехов микроэлектроники, неизбежно ведет к усложнению аппаратуры , что неприемлемо для радиолюбительской практики, поскольку измерительный прибор становится сложней устройств, для налаживания которых он необходим.

Если не выдвигать требование, чтобы СКЗ был прямопоказываю- щим (а это важно, в первую очередь, для массовых измерений), то возможно создание очень простого в изготовлении и налаживании прибора. Метод измерения СКЗ основан в нем на усилении напряжения до уровня, при котором начинает светиться обыкновенная лампочка накаливания. Яркость свечения (ее регистрируют фоторезистором) лампочки однозначно связана с СКЗ приложенного к ней переменного напряжения. Чтобы исключить нелинейность преобразователя переменное напряжение - резистора, целесообразно использовать лишь для регистрации определенной яркости свечения лампочки, устанавливаемой при калибровке прибора. Тогда измерения СКЗ сводятся к регулировке коэффициента передачи предварительного усилителя так, чтобы лампочка светилась с заданной яркостью. Среднее квадратическое значение измеряемого напряжения считывают по шкале переменного резистора.

четании с диодами VD1 и VD2 обеспечивают защиту микроамперметра при значительном разбалансе моста. Этот же микроамперметр с помощью переключателя SA1 можно подключить к выходу усилителя для его балансировки по постоянному току.

Измеряемое напряжение поступает на неинвертирующий вход ОУ DA1. Следует заметить, что если исключить разделительный СI, то на вход прибора можно будет подавать переменное напряжение с постоянной составляющей. И в этом случае показания прибора будут соответствовать истинному СКЗ суммарного (постоянное + переменное) напряжения.

Теперь о некоторых особенностях рассматриваемого вольтметра и о выборе элементов для него. Главным элементом прибора является оптрон VL1. Разумеется, очень удобно использовать готовый стандартный прибор, но аналог оптрона можно изготовить и самостоятельно. Для этого необходимы лампочка накаливания и , которые помещают в корпус, исключающий попадание на внешнего света. Кроме того, желательно с^еспечить минимальную передачу тепла от лампочки к фоторезистору (его и от температуры). Наиболее жесткие требования предъявляются к лампочке накаливания. Яркость ее свечения при СКЗ напряжения на ней около 1,5 В должна быть достаточной, чтобы вывести в рабочую точку, соответствующую балансу моста. Такое ограничение обусловлено тем, что прибор должен иметь хороший пик-фактор (отношение максимально допустимого амплитудного значения измеряемого напряжения к среднему квадратическому). При небольшом пик-факторе прибор может не зарегистрировать отдельные выбросы напряжения и занизить тем самым его СКЗ. При значениях элементов моста, данных на схеме рис. 1, СКЗ напряжения на оптроне , выводящие его в рабочую точку ( около 10 кОм), будет примерно 1,4 В. Максимальная амплитуда выходного напряжения (до начала ограничения) в данном приборе не превышает 11 В, поэтому его пик-фактор будет около 18 дБ. Это значение вполне приемлемо для большинства измерений, но при необходимости его можно несколько увеличить, повысив напряжение питания усилителя.

Еще одно ограничение на лампочку накаливания - ее ток в рабочей точке не должен превышать 10 мА. В противном случае необходим более мощный эмиттер- ный повторитель, так как он должен обеспечивать пиковый ток. примерно в 10 раз больший, чем ток, потребляемый лампочкой накаливания в рабочей точке.

К фоторезистору самодельного оптрона особых требований не предъявляется, но если у радиолюбителя есть возможность выбора, то желательно найти экземпляр, который имеет необходимое в рабочей точке при меньшей освещенности. Это позволит реализовать больший пик-фактор прибора.

Выбор ОУ однозначно определяет комбинацию двух параметров: чувствительность и полосу пропускания. Амплитудно- (АЧХ) операционного усилителя К140УД8 приведена на рис. 2 (она типична для многих ОУ с внутренней коррекцией). Как видно из АЧХ, для того чтобы обеспечить измерения СКЗ напряжения в полосе частот до 20 кГц, максимальный (при верхнем по схеме рис. 1 положении движка переменного резистора R3) коэффициент усиления не должен в данном случае превышать нескольких десятков. Это подтверждает и нормированная АЧХ прибора, которая приведена на рис. 3.

Кривые 1-3 соответствуют трем положениям движка переменного резистора R3: верхнему, среднему и нижнему.

При этих измерениях усилителя (соответствует кривой 1) был около 150, что соответствует пределам измерения СКЗ от 10 до 100 мВ. Видно, что спад АЧХ на частотах выше 10 кГц в данном случае становится уже весьма существенным. Для уменьшения спада АЧХ возможны два способа. Во-первых, можно уменьшить (подбором резисторов R4 и R5) усилителя до 15…20. Это на порядок снизит чувствительность прибора (что можно легко компенсировать предварительными усилителями), но тогда и в худшем случае его АЧХ не будет идти ниже кривой 3 на рис. 3. Во-вторых, можно заменить на другой, более широкополосный (например, на К574УД1, ), что позволит реализовать при полосе пропускания усилителя 20 кГц высокую чувствительность прибора. Так, для К574УД1 усилителя при такой полосе пропускания может быть уже около нескольких сотен.

К остальным элементам прибора особых требований не предъявляется. Отметим лишь, что максимально допустимое рабочее напряжение для транзисторов VT1 и VT2, а также для фоторезистора должно быть не менее 30 В. Впрочем, для фоторезистора оно может быть и меньше, но тогда на мост следует подать пониженное напряжение и подобрать (при необходимости) резисторы R14 и R15.

Перед первым включением вольтметра движок резистора R6 устанавливают в среднее положение, резистора R3 в нижнее, а резистора R5 в крайнее правое по схеме положение. Переключатель SA1 переводят в левое-по схеме положение, а с помощью переменного резистора R6 устанавливают стрелку микроамперметра РА1 на нулевую отметку. Затем движки резисторов R3 и R5 переводят соответственно в верхнее и крайнее левое положение и уточняют балансировку усилителя. Вернув SA1 в исходное положение (контроль баланса моста), приступают к калибровке прибора.

На вход вольтметра подают напряжение синусоидальной формы от звукового генератора. Его среднее квадратическое значение контролируют любым вольтметром переменного тока, имеющим необходимые пределы измерений и частотный диапазон. Отношение максимального измеряемого напряжения к минимальному для данного вольтметра немногим больше 10, поэтому пределы измерений целесообразно выбрать от 0,1 до 1 В (для широкополосного варианта с ОУ КИОУД8) или от 10 до 100 мВ (для варианта с номиналами по рис. 1). Установив входное напряжение чуть меньше нижнего предела измерений, например 9…9,5 мВ, с помощью подстроечного резистора R5 добиваются баланса моста (движок R3 - в верхнем по схеме положении). Затем движок резистора R3 переводят в нижнее положение, а входное напряжение увеличивают до тех пор. пока не восстановится баланс моста. Если это напряжение будет более 100 мВ (для рассматриваемого нами варианта), то можно переходить к калибровке прибора и градуировке его шкалы. В случае, когда напряжение, при котором балансируется мост, меньше 100 мВ или заметно больше этого значения, следует уточнить резистора R2 (соответственно уменьшить или увеличить его). При этом, естественно, процедуру установки пределов измерения повторяют снова. Операция калибровки прибора очевидна: подавая на его вход напряжение в пределах 10… 100 мВ, вращением движка резистора R3 добиваются нулевых показаний микроамперметра и наносят на шкалу соответствующие значения.

Измерения отношения сигнал-шум магнитофонов, усилителей и другой звуковоспроизводящей аппаратуры обычно производят со взвешивающими фильтрами, которые учитывают реальную чувствительность человеческого уха к сигналам различных частот. Вот почему среднеквадратичный целесообразно дополнить таким фильтром, принципиальная которого приведена на рис. 4. Формирование требуемой АЧХ производится тремя RC-цепями - R2C2, R4C3C4 и R6C5. Амплитудно- этого фильтра приведена на

рис. 5 (кривая 2). Здесь же для сравнения показана (кривая 1) соответствующая стандартная АЧХ (стандарт СЭВ 1359-78). В области частот ниже 250 Гц и выше 16 кГц АЧХ фильтра несколько отличается от стандартной (примерно на 1 дБ), но возникающей при этом погрешностью можно пренебречь, поскольку шумовые составляющие с такими частотами в отношении сигнал-шум звуковоспроизводящей аппаратуры невелики. Выигрыш за эти небольшие отклонения от стандартной АЧХ - простота фильтра и возможность с помощью одного переключателя на два направления (SA1) отключить фильтр и получить линейный с коэффициентом передачи 10. У фильтра коэффициент передачи на частоте 1 кГц также равен 10.

Отметим, что R5 не задействован в формировании АЧХ фильтра. Он исключает возможность его самовозбуждения на высоких частотах из-за фазовых сдвигов в цепи обратной связи, обусловленных конденсаторами СЗ и С4. этого резистора некритично. При настройке прибора его увеличивают до тех пор, пока не прекратится самовозбуждение фильтра (контролируют широкополосным осциллографом или высокочастотным милливольтметром).

После подбора резистора R5 переходят к подстройке АЧХ фильтра в области высоких частот. Последовательно снимая АЧХ фильтра при различных положениях ротора подстроечного конденсатора С4, находят такое его положение, при котором на частотах выше 1 кГц отклонения АЧХ от стандартной будут минимальными. В области низких частот (300 Гц и ниже) ход АЧХ при необходимости уточняют подбором конденсатора С5. С2 (состоящий из двух конденсаторов емкостью 0,01 мкФ и 2400 пФ, включенных параллельно) влияет в первую очередь на ход АЧХ на частотах 500…800 Гц. Последний этап в настройке фильтра - подбор резистора R2. Его должно быть таким, чтобы коэффициент передачи фильтра на частоте 1 кГц был равен 10. Затем проверяют сквозную АЧХ фильтра и при необходимости уточняют емкость конденсатора С2. Когда фильтр отключен, подбором резистора R3 устанавливают коэффициент передачи предварительного усилителя равным 10.

Если этот фильтр встраивается в среднеквадратичный , то С1 и R1 (см. рис. 1) можно исключить. Их функции будут выполнять С5 и С6, а также R6 (см. рис. 4). В этом случае сигнал с резистора R6 подают непосредственно на неинвертирующий вход операционного усилителя вольтметра.

Поскольку пик-фактор измеряемого переменного напряжения в общем случае заранее не известен, то, как уже отмечалось, возможна погрешность в измерениях

СКЗ, обусловленная ограничением амплитуды сигнала на выходе усилителя. Чтобы быть уверенным в отсутствии такого ограничения, в прибор целесообразно ввести пиковые индикаторы максимально допустимой амплитуды сигнала: один для сигналов положительной полярности, а другой для сигналов отрицательной полярности. За основу можно взять устройство, которое было описано в .

Список литературы

1. Сухов Н. Среднеквадратичный //Радио.- 1981.- № 1.- С. 53-55 и № 12.-С. 43-45.

2. Владимиров Ф. Индикатор максимального уровня//Радио.- 1983.-№ 5.-

Бесперебойная работа электроприборов во многом зависит от уровня напряжения в сети, правильности подачи тока, целостности проводки. Провести измерение переменного напряжения можно с помощью мультиметра. Это незаменимый помощник в своевременном выявлении проблем в электросети и обеспечении безопасного использования бытовых и профессиональных приборов.

Особенности, функции, виды приборов

Данное устройство – универсальный регистратор множества электрических величин. В зависимости от модельного ряда и набора функций, которые они выполняют, мультиметры нашли свое применение, как в быту, так и в арсенале профессиональных электриков.

Средний по стоимости мультиметр может измерить:

  • показатель переменного напряжения в сети и постоянное напряжение аккумулятора или батарейки;
  • постоянный и переменный ток (силу тока);
  • уровень сопротивления;
  • работоспособность диодов (режим прозвонки);
  • частоту тока;
  • температуру;
  • величину емкости конденсатора.

Устройства нового образца могут иметь низкочастотный генератор и звуковой пробник. Среди всего ассортимента изделий стоит выделить 2 основных типа приборов.

Электронный (цифровой) тип. Полученные показатели отображаются на экране, который окружен индикаторами из семи сегментов. Большинство из них работает в автоматическом режиме, предельное значение величин мультиметр определяет самостоятельно, исходя из полученных данных. Нужно просто выбрать вид измерения. Другие модели могут передавать данные напрямую в компьютер для их дальнейшей обработки.

Стрелочный тип. Этот вид устройства станет настоящим спасением, когда сильные помехи нарушают нормальное функционирование электронного мультиметра и полностью искажают информацию.

В домашних условиях достаточно будет проводить измерения тока мультиметром электронного типа с разрядностью 3,5. Это приборы наподобие dt 831, 832 или более новой модификации dt 834.

Элементы корпуса

Так как все большим спросом стали пользоваться цифровые модели, обозначения и основные характеристики мультиметров будут рассмотрены именно на их примере.

Они оснащены жидкокристаллическим экраном, который выдает измеренные значения величин. Чуть ниже расположен, вращающийся вокруг своей оси переключатель. Он указывает выбранный вид и пределы измерений.

К гнездам на корпусе мультиметра присоединяются 2 щупа с проводами: красный или положительный, черный или отрицательный.

К разъему подписанному, как «земля» либо «СОМ», всегда подключается отрицательный щуп. Положительный подсоединяется в любое другое гнездо.

Следует отметить, что разъемов может быть 2, 3 или 4. Их количество зависит от модели и производителя. Однако и в таких мультиметрах может меняться гнездо для подсоединения только положительного щупа, отрицательный остается на прежнем месте.

Режимы работы тестера

Работа мультиметра и его режимов регулируется с помощью переключателя. Его верхнее вертикальное положение говорит о том, что устройство выключено.
Поворот в любую другую сторону говорит о смене режима и обозначается следующим образом:

Все результаты отображаются на экране тестера за считанные секунды, с точностью до сотых сообщая о величине выбранного показателя.

Обозначение переменного тока на любом мультиметре может быть изображено в виде символов АС (alternating current). Соответственно, АСА – сила переменного тока, ACV – напряжение переменного тока. Это ток, который изменяет направление движения огромное, но постоянное количество раз за 1 секунду. В домашних сетях частота изменений составляет 50 Гц.

Последовательность подключения

Важно заметить, что приступая к замерам уровня переменного тока, соблюдать полярность подсоединения щупов вовсе необязательно. В случае если ее значение отрицательно, то на экране перед цифрами просто отобразиться знак «минус».

Переключатель мультиметра, измеряющий данный показатель, ставим в соответствующее положение и устанавливаем диапазон измерений.

К выбору пределов замеров стоит отнестись максимально ответственно. Если измеряемый ток значительно превысит выбранный диапазон, это может спровоцировать перегорание предохранителя или, что еще хуже, – всего мультиметра.

Обратите внимание на выбор разъема (гнезда). Под ним должно стоять максимальное значение силы тока, которую вы хотите измерить. 10 А означает, что измеряется ток до 10 А (довольно большой).

Чтобы урегулировать процесс измерений вначале переключатель устанавливается на предельно допустимый диапазон значений, вставляют штекеры щупов в гнезда. Далее по мере необходимости снижают уровень.

Чтобы измерить силу переменного или постоянного тока, мультиметр надо включить в цепь последовательно с нагрузкой (фонарик, светильник, кулер, радиосхема и т.д.). Это основное правила для всех измерительных электроприборов. То есть для измерения тока мультиметр включают «в разрыв» цепи.

Как определить значение переменного напряжения в сети

Важным моментом при определении переменного напряжения является тот факт, что щупы мультиметра подключаются к измеряемому устройству параллельно. Это связано с тем, что напряжение само по себе – разность потенциалов между двумя точками.

Можно воспользоваться тем же принципом, что и в случае с переменным током. Диапазон величины регулировать от максимального к минимальному, не забывая про положение щупов.

В качестве примера для измерения переменного напряжения можно воспользоваться стандартной батарейкой. Переключатель ставится на соответствующий режим, устанавливается диапазон. При этом щупы касаются батарейки параллельно друг другу с обеих сторон. И моментально видно, как экран отображает величину напряжения исследуемого элемента.

С постоянным напряжением ситуация та же, только нужно не забывать переставлять переключатель на правильный режим.

Независимо от модели и специфики работы мультиметра важно соблюдать инструкцию по технике пожарной безопасности, правильно обращаться с электрическими приборами, не подвергая риску свое здоровье.

Вряд ли будет преувеличением сказать, что тестер семейства М-83х есть у каждого радиолюбителя. Простой, доступный, дешёвый. Вполне достаточный для электрика.

Но для радиолюбителя он имеет изъян при измерениях переменного напряжения. Во-первых, малую чувствительность, во-вторых, предназначен для измерений напряжений частотой 50 Гц. Часто у начинающего любителя нет других приборов, а хочется измерить, например, напряжение на выходе усилителя мощности и оценить его АЧХ. Можно ли это сделать?

В интернете все повторяют одно и то же – «не выше 400 Гц». Так ли это? Давайте посмотрим.

Для проверки собрана установка из тестера М-832, звукового генератора ГЗ-102 и
лампового вольтметра В3-38.

Судя по имеющимся данным, многочисленные приборы семейства М-83х или D-83x собраны практически по одной схеме, поэтому высока вероятность того, что результаты измерений будут близки. Кроме того, в данном случае меня мало интересовала абсолютная погрешность данного тестера, интересовали только его показания в зависимости от частоты сигнала.

Уровень был выбран около 8 Вольт. Это близко к максимальному выходному напряжению генератора ГЗ-102 и близко к напряжению на выходе УМЗЧ средней мощности.

Лучше было бы сделать ещё серию измерений с мощным УНЧ нагруженным на повышающий трансформатор, но не думаю, что результаты изменятся разительно.
Для удобства оценки АЧХ в дБ выбран уровень 0 дБ на пределе 10 В вольтметра В3-38. При изменении частоты сигнала уровень чуть подстраивался, но изменения не превышали долей дБ, ими можно пренебречь.

Результаты


В приведённой таблице К - коэффициент, на который надо умножить результат измерений тестера на данной частоте с учётом спада АЧХ.


Для получения табличных результатов в дБ на выходе генератора устанавливался уровень напряжения, полученного для каждой частоты, а разность в дБ считывалась и заносилась в таблицу. Некоторые неточности из-за округления в 0,5 дБ показаний лампового вольтметра и округления последней цифры показаний тестера. Считаю, в данном случае систематическую ошибку в 1 дБ вполне допустимой т. к. на слух она неощутима.

Вывод

Итак, что же получилось?

Частотная характеристика тестера верна не до 400 Гц, а до 4…6 кГц, выше начинается спад, который можно учесть при помощи таблицы и, значит, получить относительно достоверные результаты в диапазоне 20…20000 Гц и даже выше.


Для того чтобы утверждать, что поправки годятся для всех тестеров, нужно собрать статистику. К сожалению, мешком тестеров не располагаю.

Не надо забывать, что тестер измеряет переменное напряжение по схеме однополупериодного выпрямителя с его недостатками, такими как возможность измерений только синусоидального напряжения без постоянной составляющей, при малом измеряемом напряжении погрешность будет расти.

Как можно улучшить тестер М-832 для измерений переменных напряжений?

Можно поставить дополнительный переключатель пределов «200-20 В» и ещё один резистор шунта. Но это требует разборки и доработки тестера, надо разбираться в схеме и иметь прибор для калибровки. Считаю, что это нецелесообразно.

Лучше сделать отдельную приставку, усиливающую и выпрямляющую напряжение. Выпрямленное напряжение подавать на тестер, включённый на измерение постоянного напряжения.
Но это тема для другой статьи.

Мы уже рассматривали, что переменное напряжение характеризуется мгновенным, средним, средневыпрямленным и среднеквадратическим значениями.

Градуировку большинства шкал вольтметров, кроме импульсных, производят в среднеквадратических (действующих) значениях, которые равны 0,707 от амплитудного значения. Если известны коэффициенты формы, то по одному из параметров можно определить другие. При измерении синусоидальных напряжений мгновенное значение (амплитуда) определяется как U=Uизм*1,41, гдеUизм – действующее значение илиU=1,1*Uсв (если измеряется средневыпрямленное значение). При измерении несинусоидальных сигналов в показания также должны быть введены поправки.

Для измерения переменного напряжения применяют электромеханические, термоэлектрические и электронные приборы. Выбор прибора определяется предельными значениями напряжения, условиями измерений, требуемой точностью.

Из электромеханических приборов применяются в основном приборы электромагнитной, электродинамической и электростатической систем.

Вольтметры переменного напряжения классифицируются по различным признакам:

    по назначению: импульсные, переменного тока, фазочувствительные, селективные, универсальные;

    по методу измерения: непосредственной оценки и сравнения с мерой;

    по измеряемому параметру напряжения: амплитудные, среднеквадратические и средневыпрямленные;

    по типу индикатора: стрелочные и цифровые.

Большинство вольтметров электромагнитной системы применяются на частотах 50 Гц. Класс точности – 2,5 – 0,5.Электродинамические вольтметры имеют тот же частотный диапазон, но более высокий класс точности (0,1). Уравнение шкалы носит квадратичный характер. Достоинства – простота конструкции, возможность непосредственного применения в цепях переменного напряжения, надежность. Недостатки – низкая чувствительность, большое потребление от измерительной цепи, неравномерность шкалы.

Электростатические вольтметры применяют для измерения высоких (до 100 кВ) напряжений. Класс точности 1.

Измерение напряжения высокой частоты имеет свои особенности. Чтобы прибор не влиял на измерительную цепь, необходимо, чтобы его входное сопротивление было большим, а входная емкость как можно меньше.

В практике радиоэлектронных измерений наибольшее распространение получили электронные и выпрямительные вольтметры. Это объясняется тем, что электронные вольтметры имеют высокое входное сопротивление как на высоких, так и на низких частотах, высокую чувствительность при использовании усилителя, малое потребление из измерительной цепи.

Измерение переменного напряжения методом непосредственной оценки.

Электронные вольтметры.

Структурные схемы электронных вольтметров строятся в основном по двум схемам, милливольтметры и вольтметры для измерений больших напряжений. Они представлены на рисунке М2-8.

Рисунок М2-8. Электронные вольтметры для измерений переменных напряжений.

Вольтметры для измерения больших напряжений состоят из входного устройства, преобразователя переменного напряжения в постоянное (детектора), усилителя постоянного тока и измерителя магнитоэлектрической системы. Милливольтметры отличаются наличием усилителя переменного напряжения до детектора, служащего для повышения чувствительности.

Вольтметры средних значений строятся по структурной схеме первого типа с преобразователей переменного напряжения в в постоянное по среднему значению. Простейшими вольтметрами средних значений являются выпрямительные вольтметры с преобразователями, выполненными на диодах.

Селективные вольтметры.

Селективные, т.е. избирательные микровольтметры широко применяются для исследования спектра непериодических сигналов. Это высокочувствительные приемники гетеродинного типа с настройкой на определенную частоту или узкий интервал частот. Упрощенная схема селективного вольтметра приведена на рисунке М2-9.

Рисунок М2-9. Схема селективного вольтметра

Измеряемый сигнал частоты Fc подается через входное устройство на смеситель, куда поступает и сигнал от гетеродина. В смесителе измеряемый сигнал преобразуется на промежуточную частоту и усиливается УПЧ. На выходе усилителя имеется вольтметр с цифровым или стрелочным индикатором.

Импульсные вольтметры. Импульсные напряжений измеряют с помощью импульсных вольтметров, которые строятся по схеме аналогового электронного вольтметра с амплитудным детектором. В этих схемах импульсное напряжение преобразуется в напряжение постоянного тока и измеряется его значение. В этой схеме возможно измерение амплитуды только положительных импульсов, для отрицательных необходимо обратное включение диода. Специальные импульсные вольтметры градуируются в амплитудных значениях. Очень часто используют осциллографические методы измерений, которые позволяют не только измерять амплитуду импульсов, но и наблюдать их форму.

 

Возможно, будет полезно почитать: