Сколько атф образуется при клеточном дыхании. Последовательные этапы аэробного дыхания в клетке. Фотосинтез: где и как это происходит

Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически полезная энергия используется на жизнедеятельность клетки. Биологически полезная энергия представляет собой поток электронов, идущий с более высоких энергетических уровней на более низкие. Происходит это так: под действием фермента от молекулы питательного вещества (углевода, жира, б елка) отнимаются протоны (т. е. атомы водорода), а вместе с ними и электроны. Этот процесс известен под названием дегидрирования *< Передача электронов через систему переноса электронов происходит путем ряда последовательных реакций окисления - восстановления, которые в совокупности носят название «биологического окисления «.>. Отнятые электроны передаются на специальное вещество, которое называется акцептором**<Специфические соединения, которые образуют систему переноса электронов и которые попеременно окисляются и восстанавливаются, называются "цитохромами ".>. Далее другие ферменты отнимают электроны от первичного акцептора и передают их на другой и так далее, пока полностью не израсходуется энергия электрона или не запасется в виде энергии химических связей (аденозинтрифосфат). В конечном счете кислород реагирует с ионами водорода и отдавшими энергию электронами, превращается в воду, которая выводится из организма. Этот поток электронов получил название «электронного каскада «. Для большей наглядности его можно представить в виде ряда водопадов, каждый водопад вращает турбину - отдает энергию, пока не отдаст ее полностью. На самом верху «вода « - пищевое вещество, от которого будут отниматься электроны и протоны (субстрат), а внизу - «отработавшая вода « - электроны и протоны с пониженной энергетикой, соединенные с кислородом (вода), и то, что остается от субстрата, - подлежащее выделению. Теперь рассмотрим этот же процесс с позиции деструктуризации (энтропии, то есть распада). Каждая молекула пищевого вещества имеет свою собственную пространственную структуру. При дегидрировании тот или иной фермент может отщепить лишь определенные атомы водорода, занимающие определенное пространственное положение в молекуле. В результате ряда таких последовательных отщеплений вещество со сложной структурой разрушается до простых составляющих. Энергия связи, освобождаясь, используется нашим организмом на собственное укрепление - поддерживает собственные структуры белков, жиров, углеводов и т.д. Таким образом, деструктуризируя пищевые вещества, организм поддерживает на стабильном уровне структуры собственного тела. Если пища уже была ранее деструктурирована (термическая обработка, солка, сушка, рафинизация, измельчение и т. д.), то нашему организму достанется гораздо меньше энергии, заключенной в оставшихся пространственных связях. Поэтому мощь питания заключается не в калориях, а в структуре пищи. Продолжительность жизни зависит не от сытой пищи, а от струкурированной. Итак, клеточное дыхание представляет собой процесс выработки электронов, т. е. электроэнергии. Э. Болл сделал расчеты, показывающие, сколько электрической энергии вырабатывается в организме при расщеплении субстратов до воды и углекислого газа. Исходя из потребления кислорода организм взрослого человека в состоянии покоя (264 кубических сантиметра в минуту), а также того факта, что каждый атом кислорода для образования молекулы воды требует двух атомов водорода и двух электронов, Болл подсчитал, что в каждую минуту во всех клетках тела с молекул усвоенных питательных еществ в процессе биологического окисления на кислород переходит 2,86.10.22 электронов, т. е. суммарная сила тока достигает 76 ампер (А). Это внушительная величина: ведь через обычную 100-ватную лампочку проходит ток лишь около 1 ампера.
Переходу электронов с субстрата на кислород соответствует разность потенциалов 1,13 вольта (В); вольты, помноженные на амперы, дают ватты, так что 1,13 х 76 = 85,9 ватта. Таким образом, мощность потребления человеческим организмом приблизительно равна мощности, потребляемой стоваттной электролампой, однако при этом в организме используются значительно большие токи при значительно меньших напряжениях. Исходя из вышеизложенного, уясним для себя роль каждого вещества в жизненном процессе. ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА служат для построения структур нашего тела, а подвергшиеся деструктуризации, дают нам энергию в виде электронов. Конечные продукты деструктуризации питательных веществ: ВОДА дает нам среду для протекания жизненных процессов; УГЛЕКИСЛЫЙ ГАЗ является регулятором в виде жизненных процессов (изменяет КЩР, активирует генетический аппарат клетки, влияет на усвоение кислорода организмом). КИСЛОРОДУ, потребляемому при дыхании, отводится скромная роль выводить из организма электроны с пониженным энергетическим потенциалом в виде продуктов конечного звена деструктуризации - углекислого газа и воды.
С позиции биогенных элементов углерод (18%) является связкой, которая соединяет кислород (70%) и водород (10%). Не азот, а углерод является фундаментом жизни, поэтому организм всеми мерами стремится к его сохранению, ориентируя весь дыхательный процесс на стабильное сохранение углерода в виде углекислого газа и других его соединений. Уменьшение в организме углерода и его соединений сразу же сказывается на всех жизненно важных процессах, вызывая массу заболеваний.
Вот так осуществляется третья ступень дыхания - клеточное дыхание. Причем, наибольшее количество углекислого газа получается при приеме углеводистой пищи, а наименьшее - от жирной и белковой.

Мы все нуждаемся в энергии, чтобы нормально функционировать, и мы получаем эту энергию из продуктов, которые употребляем в пищу. Наиболее эффективным способом накопления энергии клетками, хранящейся в пище является клеточное дыхание, катаболический процесс для производства аденозинтрифосфата (АТФ). АТФ - молекула с высоким содержанием энергии, используемая рабочими клетками организма. Клеточное дыхание протекает как в . Существуют три основные этапа клеточного дыхания: гликолиз, цикл лимонной кислоты и окислительное фосфорилирование.

Гликолиз

Гликолиз буквально означает «расщепление сахара». Процесс гликолиза происходит в . Глюкоза и кислород подаются в клетки кровотоком. В результате гликолиза образуются две молекулы АТФ, две молекулы пировиноградной кислоты и две «высокоэнергетичные» молекулы НАДН. Гликолиз может происходить с кислородом или без него. В присутствии кислорода гликолиз является первой стадией аэробного клеточного дыхания. Без кислорода гликолиз позволяет клеткам производить небольшое количество АТФ. Этот процесс называется анаэробным дыханием или ферментацией. Ферментация также производит молочную кислоту, которая может накапливаться в мышечной ткани, вызывая болезненность и жжение.

Цикл лимонной кислоты

Цикл лимонной кислоты, также известный как цикл трикарбоновой кислоты или цикл Кребса, начинается после того, как молекулы из процесса гликолиза, преобразуются в несколько другое соединение - ацетил-КоА.

Через ряд промежуточных этапов наряду с двумя молекулами АТФ образуются несколько соединений, способных хранить «высокоэнергетические» электроны. Соединения, известные как никотинамидадениндинуклеотид (НАД) и флавинадениндинуклеотид (ФАД), снижаются в процессе. Эти приведенные формы переносят «высокоэнергетические» электроны на следующий этап.

Цикл лимонной кислоты происходит только тогда, когда есть кислород, но он не использует кислород напрямую. Все реакции этого цикла протекают в клеточных митохондриях.

Окислительное фосфорилирование

Электронный транспорт нуждается в непосредственном наличии кислорода. Электронно-транспортная цепь представляет собой ряд электронных носителей в мембране эукариотических клеток. Через серию реакций электроны с высокой энергией передаются в кислород. При этом образуется градиент, и в конечном итоге путем окислительного фосфорилирования получается АТФ. Фермент АТФ-синтаза использует энергию, создаваемую электронно-транспортной цепью для фосфорилирования АДФ в АТФ.

Максимальный выход ATФ

Таким образом, прокариотические клетки могут давать 38 АТФ-молекул, тогда как эукариотические клетки дают максимум 36. В эукариотических клетках молекулы НАДН, полученные в гликолизе, проходят через митохондриальную , которая «стоит» двух молекул АТФ.

Лекция № 8

Клеточное дыхание происходит в митохондриях. Во внутренней мембране этого органоида сосредоточены электронтранспортная (дыхательная) цепь, обеспечивающая межмолекулярный перенос электронов с субстратов клеточного дыхания на молекулярный кислород (процесс биологического окисления), и система сопряжения окисления с фосфорилированием (синтез АТФ из АДФ).

Молекула АТФ впервые была выделена Фиске и Субарроу из экстрактов скелетных мышц в 1929 г. Через 2 года отечественный биохимик В.А. Энгельгардт обнаружил связь между синтезом АТФ и клеточным дыханием. Еще через 10 лет Липман сформулировал положение о том, что АТФ является универсальной «энергетической валютой» в организме человека и животных, поскольку выполняет миссию посредника между внешним источником энергии (Солнцем) и полезной работой биологических систем.

Биологическое окисление. Все субстраты клеточного дыхания, являющиеся продуктами расщепления углеводов, белков и жиров, поставляют в митохондрии протоны (Н +) и π -электроны, которые на пути к кислороду должны передаваться по эстафете от одного вещества другому в митохондриальной дыхательной цепи. В таком путешествии электроны отдают свою энергию на синтез АТФ не одномоментно и не в одном пункте, а порциями на ступенях каскада молекул, стоящих в мембране в строгом порядке, предопределенном их восстановительными потенциалами, т. е. сродством к электронам (чем больше величина положительного восстановительного потенциала, тем выше степень сродства к электронам).

Каскад переноса π -электронов по дыхательной цепи митохондрий иллюстрирует схема (рис. 32). Каждый ее компонент (кофермент или кофактор макромолекулы), а их более 15 (на схеме показаны не все), обладает свойствами окислительно-восстановительной пары. В окисленном состоянии такая молекула является акцептором электронов, причем они поступают на нее не в одиночку, а попарно. Приняв пару электронов, молекула восстанавливается и приобретает свойства электронного донора. Так, окисленный никотинамидадениндинуклеотид (НАД +), приняв пару электронов, восстанавливается до НАДН и теперь служит основным донором электронов для дыхательной цепи. В реакциях, в которых образуется НАДН, от молекулы субстрата одновременно отнимаются 2 атома Н, которые дают 1 гидрид-ион (атом водорода с добавочным электроном − Н: -) и 1 протон. Кроме НАДН, поставщиками электронов в дыхательную цепь могут быть сукцинат, глицерофосфат и другие вещества, но тогда синтезируется меньше молекул АТФ.

Рис. 32. Схема межмолекулярного переноса π-электронов по дыхательной цепи митохондрий: слева − восстановительные потенциалы редокс-пар компонентов дыхательной цепи, справа − перепады свободной энергии на каждом из трех этапов выброса протонов в цитозоль.


При переносе одной пары электронов с НАДН на кислород образуются 3 молекулы АТФ, причем электронный транспорт по дыхательной цепи начинается с того, что у НАДН отбирается гидрид-ион (Н: -). При этом регенерируется НАД + , а гидрид-ион превращается в Н + и 2е - .

НАДН − довольно устойчивое соединение. Для отрыва от него электронов необходима большая сила. Такой силой служит разность восстановительных потенциалов между редокс-парами: никотинамидадениндинуклеотида (НАД + /НАДН) и первого компонента дыхательной цепи − флавопротеида (его коферментом служит флавинмононуклеотид − ФМН). У этого вещества стандартный восстановительный потенциал редокс-пары составляет 0,30 В, тогда как у НАД+/НАДН он равен − 0,32 В. Разница составляет всего 0,02 В, но расстояние между соседними молекулами, образующими дыхательную цепь во внутренней мембране митохондрии, − не более 2,5 нм. Поэтому напряженность электрического поля между НАДН и окисленным ФМН очень большая (порядка 10 7 В·м -1), причем ФМН имеет более положительный потенциал, чем предыдущая редокс-пара, и «стягивает» на себя π-электроны с НАДН.

Отдав электроны, НАДН окисляется до НАД + , и теперь эта редокс-пара готова принять новую пару электронов, а окисленный ФМН, отобравший электроны от НАДН, восстанавливается. Следующий компонент электрон-транспортной цепи (см. рис. 33) − коэнзим Q , молекула которого имеет «хвост» из 10 изопреновых единиц, который удерживает ее во внутренней мембране митохондрий. Эта молекула обладает свойствами редокс-пары, стандартный восстановительный потенциал которой составляет +0,07 В. Он отбирает пару электронов от ФМН и восстанавливается, а его предшественник при этом окисляется и становится акцептором π -электронов.

За коэнзимом Q в митохондриальной мембране стоят несколько цитохромов (в, с 1 , с, а + а 3). Цитохромы в, с 1 , с содержат в качестве кофактора ион железа, способный совершать превращения из окисленной (Fe 3+) в восстановленную (Fe 2+) форму и обратно. Комплекс цитохромов + а 3) называется цитохромоксидазой и содержит не только железо, но и медь. Чем дальше стоит цитохром от коэнзима Q , тем все более положителен восстановительный потенциал его редокс-пары: от цитохрома в (+0,12 В) до цитохромоксидазы (+0,55 В). С цитохромоксидазы пара π -электронов поступает на кислород и восстанавливает его до воды. Стандартный восстановительный потенциал редокс-пары: О 2 /Н 2 О равен +0,82 В, т. е. О 2 обладает наибольшим сродством к электронам.

Таким образом, при переносе пары π -электронов с НАД на О 2 разность восстановительных потенциалов составляет 1,14 В (от -0,32 В до + 0,82 В). Между перепадами стандартного восстановительного потенциала (U ) и изменениями свободной энергии системы (G ) существует прямо пропорциональная зависимость:

(33)

где п − количество переносимых электронов (n = 2), F − число Фарадея (F = 96484 Кл·моль -1).

Согласно расчету, изменение свободной энергии π -электронов при их межмолекулярном переносе от НАД до О 2 составляет − 220 кДж · моль -1 . Знак минус означает, что переносимые π -электроны теряют в дыхательной цепи свою энергию. Но она тратится не понапрасну. «Львиная доля» (от 43 до 60%) идет на синтез АТФ, в тепло преобразуется сравнительно небольшая ее часть (около 15%), а за счет остальной энергии работают системы активного транспорта в митохондриальной мембране.

Сопоставляя шкалы восстановительных потенциалов компонентов систем фотосинтеза и дыхательной цепи, нетрудно убедиться в том, что солнечная энергия, конвертированная π -электронами при фотосинтезе, затрачивается преимущественно на клеточное дыхание (на синтез АТФ). За счет поглощения двух фотонов обеими фотосистемами (ФС II и ФС I) π -электроны переносятся от Р 680 до ферредоксина, увеличивая свою свободную энергию примерно на 241 кДж · моль -1 . Ее небольшая часть расходуется при переносе π -электронов в зеленых растениях с ферредоксина на НАДФ + . В результате синтезируются вещества, которые затем становятся пищей для гетеротрофов и превращаются в субстраты клеточного дыхания. В начале дыхательной цепи запас свободной энергии π -электронов составляет 220 кДж · моль -1 . Значит, до этого энергия π -электронов, аккумулировавших солнечную энергию, понизилась всего на 21 кДж · моль -1 . Следовательно, более 90% солнечной энергии, запасенной в зеленых растениях, доносится возбужденными π -электронами до дыхательной цепи митохондрий животных и человека.

Конечным продуктом окислительно-восстановительных реакций в дыхательной цепи митохондрий является вода. В ходе биологического окисления у человека в покое за сутки образуется около 300 мл так называемой эндогенной воды окисления. При усилении метаболизма образование эндогенной воды окисления усиливается. Ее объем определяется массой окисленных субстратов клеточного дыхания: при окислении 100 г жира образуется примерно 100 мл воды, тогда как окисление 100 г белка и 100 г углеводов дает соответственно 40 и 50 мл воды.

Благодаря поглощению фотонов электроны достигают наивысшего биопотенциала в фотосистемах растений. С этого высокого энергетического уровня они дискретно (по ступенькам) спускаются на самый низкий в биосфере энергетический уровень − уровень воды. Энергия, отдаваемая электронами на каждой ступеньке этой лестницы, превращается в энергию химических связей и таким образом движет жизнью животных и растений.

Электроны воды «оживляются» в процессе фотосинтеза, пополняя электронный фонд хлорофилла Р 680 по мере потери им своих π -электронов под действием Солнца, а клеточное дыхание снова порождает воду, электроны которой не способны придать ей химическую активность в организме животных и человека.

Для окислительного фосфорилирования важна мембранная организация системы клеточного дыхания, обеспечивающая строгую упорядоченность взаимного расположения молекул, образующих каскад электрон-транспортной цепи и весь молекулярный ансамбль сопряжения процессов окисления и фосфорилирования. Реконструкция дыхательной цепи была безуспешной до тех пор, пока Э. Рэкер не догадался расположить ее компоненты (переносчики π -электронов) в митохондриальной мембране асимметрично. Одни переносчики сосредоточены на наружной стороне внутренней митохондриальной мембраны, другие − на внутренней, третьи (цитохромоксидаза) − пронизывают ее насквозь, а протонная помпа (F) не только «прошивает» всю мембрану, но и выступает в матрикс. Векторные структурно-топографические особенности молекулярной организации внутренней мембраны митохондрий являются необходимым условием для превращения энергии возбужденных π -электронов в свободную энергию концевой фосфатной связи АТФ.

Сопряжение окисления и фосфорилирования. Кроме π -электронов, транспортируемых от молекулы к молекуле по дыхательной цепи вдоль внутренней мембраны митохондрий, через нее (поперек) переносятся некоторые частицы: элементарные (протоны) и гораздо более крупные (например, молекулы АТФ). Транспорт протонов обеспечивает сопряжение окисления и фосфорилирования. Важнейшая роль в этом процессе принадлежит Н-АТФазе (протонной помпе), встроенной во внутреннюю митохондриальную мембрану.

За счет свободной энергии, выделяемой при транспорте по дыхательной цепи (ДЦ) пары электронов, образуются 3 молекулы АТФ. В так называемых стандартных условиях, когда концентрации АТФ, АДФ и ортофосфорной кислоты равны 1 моль · л -1 , величину изменения свободной энергии (G ) при гидролизе АТФ называют изменением стандартной свободной энергии для данной реакции (G 0 ) − оно равно 31,4 кДж·моль -1 . В других условиях G отличается от G 0 . Так, при концентрациях АТФ, АДФ и Н 3 РО 4 , свойственных клеткам в физиологических условиях, энергия гидролиза АТФ (равно как и энергия синтеза АТФ из АДФ и Н 3 РО 4) может достигать 45 кДж·моль -1 .

Число молекул АТФ, синтезированных при окислении того или иного вещества, определяется количеством пар электронов, поставляемых им в дыхательную цепь. В целом восстановление О 2 до Н 2 О может быть представлено в виде реакций:

Значит, в дыхательной цепи с предшествующих этапов расщепления органических веществ в клетке должны поступать атомы водорода, являющиеся непосредственными источниками электронов, переносимых по ней. По утверждению А. Сент-Дьердьи, «водород − это топливо жизни, и ни один электрон в живых системах не способен двигаться, если его не сопровождает водород». В конечном счете все субстраты клеточного дыхания поставляют в дыхательную цепь протоны и электроны. Они образуются главным образом при расщеплении воды, катализируемом специальными ферментными системами. Среди них важнейшая роль в качестве предварительной стадии окислительного фосфорилирования принадлежит так называемому циклу Кребса. От него начинаются пути многих биосинтетических процессов (синтез углеводов, липидов, белков и других сложных органических соединений).

Вместе с тем он служит основным поставщиком электронов и протонов на НАД + . В реакциях цикла Кребса образуются СО 2 , Н + и электроны, восстанавливающие НАД + до НАДН. Основное назначение цикла Кребса в клеточном дыхании состоит в повышении выхода свободной энергии из органических соединений путем катализа расщепления воды для образования большего количества протонов и электронов, поставляемых далее в дыхательную цепь.

Для получения общего представления о значимости окислительного фосфорилирования в энергетическом обеспечении организма полезно количественно оценить синтез АТФ при расщеплении глюкозы. В ней заключена свободная энергия в 2879 кДж·моль -1 (примерно 685 ккал·моль -1). Первой стадией расщепления глюкозы служит гликолиз, в ходе которого каждая молекула распадается на 2 молекулы пировиноградной кислоты. При этом потребляются 2 и синтезируются 4 молекулы АТФ. Суммарно в результате превращения 1 моля глюкозы в пируват организм получает 2 моля АТФ. Процесс идет в анаэробных условиях. В отсутствие кислорода пировиноградная кислота затем восстанавливается до молочной, которая выводится из организма. Огромная энергия, заключенная в этом веществе, не используется организмом. Эффективность использования энергии при анаэробном гликолизе ничтожна − около 2%.

В аэробных условиях 2 молекулы пировиноградной кислоты, образовавшиеся при распаде молекулы глюкозы, не восстанавливаются, а окисляются далее до СО 2 с участием цикла Кребса и дыхательной цепи. В цикле Кребса синтезируются еще 2 молекулы АТФ. Далее в дыхательную цепь поставляются 12 пар электронов, но две из них поступают не на НАД + , а через флавопротеиды на кофермент Q , обеспечивая синтез двух, а не трех молекул АТФ в расчете на пару электронов (см. рис. 32). Следовательно, за счет транспорта по дыхательной цепи этих двух пар электронов, миновавших НАД + , синтезируются 4 молекулы АТФ. Остальные 10 пар электронов переносятся по дыхательной цепи от НАДН до О 2 , и за счет них синтезируются 30 молекул АТФ.

В целом при окислении 1 моля глюкозы происходит образование 38 молей АТФ. Эффективность использования свободной энергии при аэробном окислении глюкозы составляет при таком расчете около 42%:

(34)

Это нижняя граница возможных значений. Если же принять во внимание физиологические концентрации различных ингредиентов окисления и фосфорилирования, то энергия гидролиза АТФ в клетке, как уже говорилось, достигает от 31,4, до 45 кДж·моль -1 , и эффективность использования свободной энергии при синтезе АТФ в ходе аэробного окисления глюкозы оценивается в 60%. Вместе с тем не вся остальная энергия (40%) рассеивается в виде тепла. Много энергии затрачивает митохондрия на активный транспорт веществ через ее мембраны, т. е. преобразуется также в один из видов полезной работы организма. В сумме синтез АТФ и трансмембранный перенос веществ используют более 75% свободной энергии, освобождающийся при биологическом окислении глюкозы.

При окислении жиров образуется больше АТФ, чем при окислении углеводов. Например, окисление 1 моля пальмитиновой кислоты дает 129 молей АТФ, но на это уходит гораздо больше кислорода, чем на окисление глюкозы. Чтобы синтезировать 1 моль АТФ в миокарде посредством окисления жирной кислоты, нужно затратить на 17% кислорода больше, чем в аналогичном процессе с участием глюкозы. Поэтому КПД окислительного фосфорилирования при метаболизме жиров значительно ниже, чем при метаболизме углеводов. Ключевой проблемой окислительного фосфорилирования остается механизм сопряжения транспорта электронов по дыхательной цепи и фосфорилирования, т. е. синтеза АТФ, в митохондриях.

Существуют 3 основные гипотезы сопряжения окисления и фосфорилирования: химическая, механохимическая, химиоосмотическая.

Согласно химической гипотезе, посредниками между переносом электронов по дыхательной цепи и синтезом АТФ служат неизвестные пока химические вещества, которые принимают на себя возбужденные электроны и затем переносят их на АДФ или ортофосфат для синтеза АТФ при их взаимодействии. Предпосылкой химической гипотезы явилось обнаружение таких «первичных макроэргов» в процессе синтеза АТФ при анаэробном гликолизе.

В соответствии с механохимической гипотезой, перенос электронов дыхательными ферментами создает их напряженную конформацию, т. е. сжимает молекулу фермента наподобие пружины. Далее энергия, накопленная такой макромолекулой, предается в форме механической деформации компонентам протонной помпы, образующим с дыхательными ферментами прочные комплексы. При последующем расслаблении напряженных молекул накопленная ими энергия идет на синтез АТФ. Авторы механохимической гипотезы видят подтверждение ее основных положений в том, что перенос электронов по дыхательной цепи сопровождается деформациями митохондриальных крист. Однако эти изменения происходят довольно медленно. Большинство исследователей считают их не причиной, а следствием окислительного фосфорилирования.

Основной постулат химиоосмотической гипотезы состоит в том, что энергия, освобождающаяся при окислении, вначале накапливается в форме электрического и концентрационного градиентов на внутренней мембране митохондрии, а уже они непосредственно обеспечивают преодоление энергетического барьера в реакции фосфорилирования АДФ: АДФ + Н 3 РО 4 АТФ + Н 2 О. Химиоосмотическая гипотеза со времени создания ее П. Митчеллом в 1961 г. не опровергнута ни одним экспериментом, но и не приобрела всех необходимых прямых доказательств.

Основную идею гипотезы Митчелла подтверждает факт нарушения окислительного фосфорилирования при снижении разности потенциалов на митохондриальной мембране и падении разности рН между цитозолем и матриксом. Именно так действуют агенты, разобщающие окисление и фосфорилирование. Будучи слабыми липофильными кислотами, они способны переносить протоны (Н +) через липидный каркас внутренней митохондриальной мембраны, минуя канал в Н-АТФазе. Важным аргументом в пользу химиоосмотической гипотезы служат также экспериментальные данные о быстром защелачивании матрикса митохондрии и закислении окружающей их среды при резком усилении клеточного дыхания. Следовательно, перенос электронов подыхательной цепи сопровождается выходом из внутренней митохондриальной мембраны ионов Н + в цитозоль, а ОН - − в матрикс митохондрии. Транспорт обоих ионов происходит вопреки действию физико-химических градиентов, на что и затрачивается свободная энергия, выделяющаяся при окислении субстратов клеточного дыхания. Поддержание определенного концентрационного градиента Н + на митохондриальной мембране − необходимое условие сопряжения окисления и фосфорилирования, которое нарушается не только при его падении, но и при избыточном повышении. Во втором случае транспорт электронов по дыхательной цепи тормозится, вплоть до полной остановки, а на некоторых участках они идут вспять, создавая обратный электронный поток.

По-видимому, в результате переноса электронов по дыхательной цепи во внутренней мембране митохондрии образуется не вода, а Н + и ОН - , которые благодаря векторным свойствам этой мембраны выделяются из нее по разные стороны − в разные компартменты (матрикс и межмембранное пространство) митохондрии (рис. 33).

Вследствие высокой проницаемости наружной митохондриальной мембраны Н + -ионы легко выходят в цитозоль, создавая там более низкий рН, чем в матриксе, куда протоны не могут проникнуть из-за крайне слабой проницаемости внутренней митохондриальной мембраны для них. Окисление концентрирует Н + в одном из компартментов, разделенных митохондриальными мембранами, и, стало быть, совершает осмотическую работу.

Рис. 33. Модель механизма транспорта протонов через внутреннюю митохондриальную мембрану.

Осмотическая энергия накапливается в виде градиента Н + -ионов (протонного градиента) на этой мембране. Один акт восстановления молекулы О 2 до Н 2 О приводит к выделению 4 Н + в цитозоль и 4 ОН - в матрикс. Избытки ионов противоположного знака по обе стороны мембраны создают на ней разность потенциалов порядка 200−250 мВ, причем митохондриальный матрикс приобретает отрицательный потенциал относительно цитозоля. Так митохондрия накапливает электрическую энергию. Митохондрии, на мембране которых поддерживается протонный градиент, называются энергизованными.

Таким образом, энергия возбужденных электронов преобразуется на внутренней мембране митохондрии в осмотическую и электрическую, вследствие чего создается протондвижущая сила, которая стремится обеспечить трансмембранный перенос Н + -ионов для выравнивая их концентрации внутри и вне митохондрии, но этому препятствует внутренняя митохондриальная мембрана.

Транспорт протонов, создающий протондвижущую силу, реализующуюся затем при синтезе АТФ, происходит в два такта:

1) Н + , покинувший какую-либо молекулу во внутренней мембране митохондрии под действием энергии переносимых электронов, выходит из нее в межмембранное пространство и далее в цитозоль;

2) на его место приходит Н + из матрикса.

Следовательно, протоны проходят мембраны не насквозь, а передаются по эстафете − по аналогии с процессом в плазмолемме галобактерии, но с той разницей, что свободную энергию на выброс Н + галобактерии получают при непосредственном поглощении фотонов, а митохондрии − от π -электронов, возбужденных Солнцем в молекуле хлорофилла и сохранивших возбужденное состояние в биомолекулах (субстратах клеточного дыхания), катаболизирующих в организме до атомарного водорода (протона и электрона).

За счет энергии, выделяющейся в ходе биологического окисления, протоны выходят из компонентов внутренней митохондриальной мембраны в межмембранное пространство и далее в цитозоль, преодолевая электрохимический потенциал. Вакансии, образовавшиеся в химических веществах мембраны при отдаче Н + , заполняются протонами из матрикса. При таком транспорте от Н + отстают анионы гидроксила, в результате чего на митохондриальной мембране разобщаются разноименные заряды (катионы и анионы), и между матриксом и цитозолем формируется разность потенциалов.

Предполагают, что выход протонов из внутренней митохондриальной мембраны в цитозоль происходит в трех участках дыхательной цепи:

1) между НАДН и коэнзимом Q;

2) между цитохромами b и c 1 ;

3) между цитохромом с и цитохромоксидазой. Раньше эти участки считались пунктами синтеза АТФ, что и обозначалось на схемах клеточного дыхания.

Современная схема окислительного фосфорилирования, происходящего в митохондриях, изображена на рис. 34. Ее важнейшим элементом, наряду с дыхательной цепью, является сложный молекулярный комплекс Н-АТФазы, которая здесь выполняет функцию синтеза АТФ и поэтому называется Н-АТФсинтетазой (или Н-АТФсинтазой).

Состав, структурные и топографические свойства этого фермента хорошо изучены (с разрешением в 0,28 нм). В нем выделили две части: 1) мембранную − гидрофобный белковый комплекс, образующий канал для Н + во внутренней митохондриальной мембране (F 0 ) и 2) матричную − гидрофильный фактор сопряжения, выступающий из мембраны в матрикс (F 1 ).

Рис. 34. Общая схема окислительного фосфорилирования.

Весь фермент по своему строению похож на гриб, ножку которого образует F 0 , а сферическую головку − F 1 (35).

Рис. 35. Упрощенная схема Н-АТФсинтетазы.

Комплексы F 0 и F 1 связаны между собой неподвижным «кронштейном», образованным а- и b- субъединицами первого из них и -субъединицей второго, и подвижной -субъединицей.

Как уже говорилось, Н-АТФсинтетаза представляется электромотором. Его статор включает части обоих комплексов: F 1 (гексамер из 3- и 3-субъединиц, а также -субъединицу) и F 0 (а- и b- субъединицы). В состав ротора, диаметр которого составляет 1 нм, входят - и -субъединицы комплекса F 1 и цилиндр из с-субъединиц комплекса F 0 .

Можно считать доказанным, что ферментативная активность Н-АТФсинтетазы непосредственно связана с вращением ее -субъединицы в полости гексамера. При таком повороте изменяется конформация всех трех каталитических (т. е. катализирующих реакцию АДФ + Н 3 РО 4 -> АТФ + Н 2 О) -субъединиц комплекса F 1 что и обеспечивает активирование фермента. Он работает как электромотор, подвижная часть которого вращается при пропускании электрического тока через обмотку.

В отличие от технических электромоторов, в Н-АТФсинтетазе ток через обмотку статора обусловлен потоком не электронов, а протонов. Движущей силой протонного электротока через канал в F 0 служит разность электрохимических потенциалов Н + -ионов на внутренней митохондриальной мембране. Поэтому ее и называют протондвижущей силой. Она образуется за счет активного транспорта протонов из мембраны в цитозоль − в сторону более высокого электрохимического потенциала, т. е. вопреки сопряженному действию концентрационного и электрического градиентов. Такой источник энергии для систем активного транспорта называют редокс-помпой.

В результате активного транспорта ионов водорода в межмембранное пространство и далее − в цитозоль рН цитозоля ниже, чем рН митохондриального матрикса. Разность концентраций Н + -ионов между цитозолем и матриксом может достигать трех порядков. Чем она больше, тем выше степень энергизованности митохондрий. В обычных условиях на мембранах дышащей митохондрии гепатоцита протондвижущая сила ( H +) находится в линейной зависимости от изменения свободной энергии при активном транспорте протонов (G H +). Если выразить протондвижущую силу в мВ, a G H + − в ккал·моль -1 , то G H + = - 0,023 · ( H +). При ( H +) = 220 мВ изменение свободной энергии при активном транспорте 3 протонов составляет 5,06 ккал · моль -1 . Однако даже очень большая протондвижущая сила не обеспечивает синтез АТФ, если ее потенциальные возможности не будут реализованы, т. е. если под действием протондвижущей силы Н + -ионы не станут перемещаться из цитозоля в митохондриальный матрикс через протонный канал в F 0 . Пока он закрыт, протондвижущая сила не реализуется.

Если Н + -ионы пойдут из цитозоля в матрикс не по каналу в F 0 , а иначе, то АТФ не синтезируется даже при весьма интенсивном транспорте электронов по дыхательной цепи и обусловленным им выбросе Н + -ионов в цитозоль (с закислением его). Такое состояние возникает не только под действием искусственных протонофоров (например, динитрофенол, аспирин и другие слабые липофильные кислоты). Оно имеет место в естественных условиях в так называемом буром жире. Эта ткань присутствует у эмбрионов и новорожденных детей, а также у животных, впадающих в зимнюю спячку. Во внутренних мембранах митохондрий клеток бурого жира содержится особый транспортный белок (естественный протонофор), который позволяет Н + -ионам свободно переходить в сторону более низкого электрохимического потенциала из цитозоля в митохондриальный матрикс, минуя канал F 0 . В результате клетки бурого жира весьма интенсивно окисляют жир, но энергия возбужденных π -электронов преобразуется преимущественно в тепло, а не в химическую энергию синтеза АТФ. Это важный механизм защиты организма от переохлаждения.

Протонный канал в F 0 состоит из 2 частей (полуканалов), одна из которых находится около межмембранного пространства, где концентрация Н + -ионов высока, а другая примыкает к матриксу. Между полуканалами нет соосности. Главная роль в работе канала принадлежит аминокислотным остаткам a- и с-субъединиц F 0 , содержащим протонируемые карбоксильные группы, поскольку они способны взаимодействовать с протонами и передавать их друг другу. В F 0 такой способностью обладают аспарагил, аргинил, гистидил и глютамил.

Предполагают, что сигналом к переходу протонного канала из закрытого в открытое состояние служит уменьшение в клетке величины соотношения концентраций АТФ и АДФ, т. е. повышение содержания АДФ и ортофосфорной кислоты. Это происходит при усиленном гидролизе АТФ, в результате чего возрастает потребность в активизации его синтеза.

Как только протонный канал в F 0 открывается, в него устремляются ионы водорода из цитозоля − возникает протонный электрический ток в «обмотках» молекулярного электромотора (Н-АТФсинтетазы). Поток заряженных частиц (Н +) приводит в движение его ротор (-субъединицу комплекса F 1). Блокада движения Н + -ионов через канал дициклокарбодиимидом, специфическим ингибитором аспарагила в с-субъединице комплекса F 0 , останавливает вращение ротора, а вместе с ним и синтез АТФ, поскольку фосфорилирование АДФ с образованием АТФ активизируется посредством так называемого вращательного катализа (rotary catalysis). Вращение -субъединицы в статоре Н-АТФсинтетазы происходит скачками (дискретно) с шагом в 120°. Для совершения ротором такого шага через канал должны пройти 2−3 иона водорода. При каждом скачке развивается усилие в 40 пиконьютонов и синтезируется 1 молекула АТФ. Полный оборот ротора происходит за 3 скачка − при этом образуются 3 молекулы АТФ. Если сравнить силы, возникающие при работе Н-АТФсинтетазы и актомиозинового комплекса, то первая из них на порядок больше.

Таким образом, синтез АТФ связан не только с теми преобразованиями энергии, которые постулировал П. Митчелл в своей химиоосмотической гипотезе. Цепь энергетических превращений включает: солнечную энергию, заключенную в π -электронах, участвующих в химических связях многих органических веществ; осмотическую энергию переносимых Н + -ионов; электрическую энергию мембранного потенциала в митохондриях; механическую энергию ротора, вращающегося в статоре Н-АТФсинтетазы, и накопление химической энергии в концевой фосфатной связи АТФ.

Скорость работы Н-АТФсинтетазы зависит не только от величины протондвижущей силы, но и от концентрации субстратов синтеза АТФ, т. е. от концентрации АДФ и Н 3 РО 4 . По мере усиления наработки АТФ фермент снижает свою активность, тем более что при его активной работе падает градиент Н + -ионов на митохондриальных мембранах. Такая ситуация служит сигналом к повышению скорости переноса электронов по электрон-транспортной цепи митохондрий. Следовательно, между биологическим окислением и фосфорилированием при их сопряжении в митохондриях существует сложная система обратных связей.

Протондвижущая сила на митохондриальных мембранах обеспечивает не только фосфорилирование АДФ как таковое, но также трансмембранный перенос ортофосфата из цитозоля в матрикс. Транспорт фосфата, а также пирувата через внутреннюю митохондриальную мембрану осуществляется посредством симпорта с Н + . Для Са 2+ в мембране есть специальный транспортный белок, но он не работает, если падает трансмембранный электрический градиент, обычно поддерживаемый выбросом Н + в цитозоль. Только тогда в матриксе создается отрицательный потенциал относительно цитозоля. Он-то и притягивает к себе катионы кальция, а переносчик обеспечивает их пассивный транспорт.

Антипорт АТФ и АДФ через митохондриалъные мембраны. АТФ после синтеза в митохондрии покидает ее, выходя через мембраны в цитозоль. В обратном направлении транспортируется АДФ, из которого синтезируются новые порции АТФ. Их антипорт обеспечивается переносчиком. АТФ − четырех-, а АДФ − трехвалентные анионы. Их сопряженный транспорт экономит энергию, поскольку перенос заряженных частиц − весьма энергоемкий процесс, а встречное движение четырех- и трехзарядных частиц одного знака равнозначно преодолению мембраны однозарядной частицей. У человека оборачиваемость молекулы АТФ на митохондриальной мембране составляет 10 3 −10 4 раз в сутки. В результате концентрация АТФ в 5−10 раз превосходит содержание АДФ в клетке.

Выйдя в цитозоль, АТФ взаимодействует с креатином (Кр), в результате чего образуется креатшфосфат (КрФ) и АДФ (рис. 36). АДФ транспортируется в митохондриальный матрикс в обмен на АТФ, а КрФ мигрирует по цитозолю к тем частям клетки, где нужна свободная энергия в данный момент. Там КрФ вступает в реакцию с АДФ, продуктами которой служат АТФ и Кр. По мере надобности АТФ гидролизуется и дает возбужденный ортофосфат для фосфорилирования и, благодаря этому, энергизации функциональных биомолекул, что позволяет им преодолеть потенциальный барьер реакций, в которые они вступают. Креатин же мигрирует к митохондрии, где вступает в реакцию с АТФ для повторения цикла. Как синтез, так и распад креатинфосфата катализируется креатинфосфокиназой (КФК).

Рис. 36. Схема транспорта АТФ через митохондриальные мембраны и по цитоплазме: Кр − креатинин; КФК − креатинфосфокиназа; КрФ − креатинфосфат.

Клеточное дыхание

Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически полезная энергия используется на жизнедеятельность клетки.

Биологически полезная энергия представляет собой поток электронов, идущий с более высоких энергетических уровней на более низкие. Происходит это так: под действием фермента от молекулы питательного вещества (углевода, жира, белка) отнимаются протоны (то есть атомы водорода), а вместе с ними и электроны. Этот процесс известен под названием дегидрирования. Отнятые электроны передаются на специальное вещество, которое называется акцептором. Далее другие ферменты отнимают электроны от первичного акцептора и передают их на другой и так далее, пока полностью не израсходуется энергия электрона или не запасется в виде энергии химических связей (аденозинтрифосфат). В конечном счете кислород реагирует с ионами водорода и отдавшими энергию электронами, превращается в воду, которая выводится из организма. Этот поток электронов получил название «электронного каскада». Для большей наглядности его можно представить в виде ряда водопадов, каждый водопад вращает турбину – отдает энергию, пока не отдаст ее полностью. На самом верху «вода» – пищевое вещество, от которого будут отниматься электроны и протоны (субстрат), а внизу – «отработавшая вода» – электроны и протоны с пониженной энергетикой, соединенные с кислородом (вода), и то, что остается от субстрата, – которая подлежит выделению.

Теперь рассмотрим этот же процесс с позиции деструктуризации (энтропии, то есть распада). Каждая молекула пищевого вещества имеет свою собственную пространственную структуру. При дегидрировании тот или иной фермент может отщепить лишь определенные атомы водорода, занимающие определенное пространственное положение в молекуле. В результате ряда таких последовательных отщеплений вещество со сложной структурой разрушается до простых составляющих. Энергия связи, освобождаясь, используется нашим организмом на собственное укрепление: поддерживает собственные структуры белков, жиров, углеводов и т. д. Таким образом, деструктуризируя пищевые вещества, организм поддерживает на стабильном уровне структуры собственного тела.

Если пища уже была ранее деструктурирована (термическая обработка, солка, сушка, рафинизация, измельчение и т. д.), то нашему организму достанется гораздо меньше энергии, заключенной в оставшихся пространственных связях. Поэтому мощь питания заключается не в калориях, а в структуре пищи. Продолжительность жизни зависит не от сытой пищи, а от структурированной.

Итак, клеточное дыхание представляет собой процесс выработки электронов, то есть электроэнергии. Э. Болл сделал расчеты, показывающие, сколько электрической энергии вырабатывается в организме при расщеплении субстратов до воды и углекислого газа. Исходя из потребления кислорода организмом взрослого человека в состоянии покоя (264 см 3 /мин), а также того факта, что каждый атом кислорода для образования молекулы воды требует двух атомов водорода и двух электронов, Болл подсчитал, что в каждую минуту во всех клетках тела с молекул усвоенных питательных веществ в процессе биологического окисления на кислород переходит 2,86 ? 1022 электронов, то есть суммарная сила тока достигает 76 ампер. Это внушительная величина: ведь через обычную 100?ваттную лампу проходит ток лишь около 1 ампера.

Переходу электронов с субстрата на кислород соответствует разность потенциалов 1,13 вольта; вольты, помноженные на амперы, дают ватты, так что 1,13 ? 76 = 85,9 ватта.

Таким образом, мощность потребления человеческим организмом приблизительно равна мощности, потребляемой стоваттной электролампой, однако при этом в организме используются значительно большие токи при значительно меньших напряжениях.

Исходя из вышеизложенного, уясним для себя роль каждого вещества в жизненном процессе. Питательные вещества служат для построения структур нашего тела, а подвергшиеся деструктуризации – дают нам энергию в виде электронов. Конечные продукты деструктуризации питательных веществ: вода дает нам среду для протекания жизненных процессов; углекислый газ является регулятором жизненных процессов (изменяет кислотно-щелочное равновесие, активирует генетический аппарат клетки, влияет на усвоение кислорода организмом). Кислороду, потребляемому при дыхании, отводится скромная роль выводить из организма электроны с пониженным энергетическим потенциалом в виде продуктов конечного звена деструктуризации: углекислого газа и воды.

С позиции биогенных элементов углерод (18 %) является связкой, которая соединяет кислород (70 %) и водород (10 %). Не азот, а углерод является фундаментом жизни, поэтому организм всеми силами стремится к его сохранению, ориентируя весь дыхательный процесс на стабильное сохранение углерода в виде углекислого газа и других его соединений. Уменьшение в организме углерода и его соединений сразу же сказывается на всех жизненно важных процессах, вызывая массу заболеваний.

Вот так осуществляется третья ступень дыхания – клеточное дыхание. Причем наибольшее количество углекислого газа получается при приеме углеводистой пищи, а наименьшее – от жирной и белковой.

Из книги Улучшение зрения без очков (без рисунков) автора Уильям Горацио Бейтс

3.6.Дыхание Кислород, как известно, играет важную роль во многих жизненных процессах, происходящих в организме. Поэтому дыхательным упражнениям уделяется большое внимание практически во всех системах оздоровления человека. Не стал исключением и метод Бэйтса. Некоторыми

Из книги Наука о дыхании индийских йогов автора Вильям Волкер Аткинсон

Глава VI ДЫХАНИЕ ЧЕРЕЗ НОЗДРИ И ДЫХАНИЕ ЧЕРЕЗ РОТ Один из первых уроков науки дыхания йогов посвящается тому, чтобы научиться дышать носом и победить обычную привычку – дышать ртом.Дыхательный механизм человека позволяет ему дышать и носом и ртом, но для него дело истинно

Из книги Как продлить быстротечную жизнь автора Николай Григорьевич Друзьяк

АТФ - УНИВЕРСАЛЬНОЕ КЛЕТОЧНОЕ ГОРЮЧЕЕ И снова мы возвращаемся к энергетике клетки. Вспомним, что клетка - это отдельный микромир, имеющий четкие границы, внутри которых существует непрерывная химическая активность и непрерывный поток энергии. В переносе энергии от

Из книги Полная энциклопедия оздоровления автора Геннадий Петрович Малахов

Клеточное дыхание Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически

Из книги Заболевания кожи автора Автор неизвестен

Глава 1. Анатомия и гистология (клеточное строение) кожи. Особенности анатомии и гистологии кожи у детей Являясь внешним покровом тела человека, кожа имеет сложное строение и выполняет несколько важных функций. Самый большой орган человека – это кожа. Площадь кожного

Из книги Пропедевтика внутренних болезней автора А. Ю. Яковлева

31. Везикулярное дыхание. Бронхиальное дыхание Шумы, возникающие в процессе дыхания, делят на физиологические (или основные) и патологические (или дополнительные).К основным шумам относят везикулярное дыхание, прослушиваемое над всей поверхностью легочной ткани, и

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

1. Везикулярное дыхание: механизм, физиологические и патологические варианты. Бронхиальное дыхание, его характеристика, разновидности, механизм образования Шумы, возникающие в процессе дыхания, делят на физиологические (или основные) и патологические (или

Из книги Йога автора Вильям Волкер Аткинсон

Из книги Диабет. Мифы и реальность автора Иван Павлович Неумывакин

Из книги 365 золотых упражнений по дыхательной гимнастике автора Наталья Ольшевская

265. Изначальное дыхание (дыхание зародыша) Дыхание человека обычно является отражением его стиля жизни. Люди, которые все время спешат, дышат поверхностно. Те, кто имеют возможность созерцать, – дышат глубоко. Но у каждого из нас был период максимального комфорта и

Из книги Все дыхательные гимнастики. Для здоровья тех, кому за… автора Михаил Борисович Ингерлейб

Глава 5. Клеточное дыхание Сложными, но верными в выбранном направлении тропами мы добрались до того момента, когда вам наконец станет ясно, для чего же столько хлопот – «тянуть» в глубь организма, к каждой его клеточке кислород, да еще и стараться, чтобы каждой клетке

Из книги Упражнения цигун для начинающих автора Валерий Николаевич Хорев

Дыхание Большинство из нас почему-то думают, будто ротовое отверстие пригодно не только для употребления пищи, но также для наполнения легких. Это заблуждение! Воздух, вдыхаемый через нос, проходит сложным лабиринтом, в котором он согревается, увлажняется и освобождается

Из книги Осознанное управление здоровьем автора Дмитрий Шаменков

Дыхание 1. Практика работы с дыханием, также как и телесная практика, тесно связана с фундаментальной практикой внимательности.2. Практика работы с дыханием требует повышенного внимания, так как дыхание - исключительно важный физиологический процесс.3. Практика работы с

Из книги Йога для всех. Руководство для начинающих автора Наталья Андреевна Панина

Дыхание При выполнении различных упражнений или асан необходимо правильно дышать. Для каждого конкретного случая подходит определенный тип дыхания. Ниже будет рассказано о некоторых из

Из книги Избранные упражнения и медитации автора Ниши Кацудзо

Обратное брюшное дыхание – «даосское дыхание» «Даосское дыхание» используется при занятиях боевыми искусствами. Оно позволяет быстро увеличить энергию тела при условии, что вы вдыхаете и выдыхаете воздух через нос.При вдохе вы втягиваете живот, максимально наполняя

Из книги автора

Грудное дыхание – дыхание силы Этот вид дыхания применяется для обретения силы при тяжелом физическом труде, например переноске тяжестей, перекатывании крупных камней и тяжелых стволов деревьев, а также при подготовке спортсменов и водолазов и в боевых искусствах.Вдох

метаболизм

Метаболизм – совокупность реакций биосинтеза и расщепления веществ в клетке. Определенная последовательность ферментативных превращений вещества в клетке называется метаболическим путем, а образующиеся промежуточные продукты – метаболиты.

Двумя взаимосвязанными в пространстве и времени сторонами метаболизма являются пластический и энергетический обмен.

Совокупность реакций биологического синтеза, когда из простых веществ, поступающих в клетку извне, образуются сложные органические вещества, подобные содержимому клетки, называется анаболизм (пластический обмен). Происходит ассимиляция. Эти реакции идут с использованием энергии, образующейся в результате реакций расщепления органических веществ, поступающих с пищей. Наиболее интенсивно пластический обмен происходит в процессе роста организма. Наиболее важные процессы анаболизма – фотосинтез и синтез белка.

Катаболизма (энергетический обмен) – ферментативные расщепления (гидролиз, окисление) сложных органических соединений на более простые. Происходит диссимиляция. Эти реакции идут с выделением энергии.

Этапы энергетического обмена. Клеточное дыхание.

Процессом, противоположным биосинтезу, является диссимиляция, или катаболизм, - совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом клетки. Гетеротрофные организмы получают энергию, необходимую для жизнедеятельности с пищей. Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекуле органических соединений. Часть энергии, освобождаемая из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т.е. накапливается в богатых энергией макроэргических фосфатных связях АТФ. Именно АТФ обеспечивает энергией все виды клеточных функций: биосинтез, механическую работу, активный перенос веществ через мембраны и т.д. Синтез АТФ осуществляется в митохондриях. Клеточное дыхание – ферментативное разложение органических веществ (глюкозы) в клетке до углекислого газа и воды в присутствии свободного кислорода, сопряженное с запасанием выделяющейся при этом энергии.

Энергетический обмен делят на тир этапа, каждый из которых осуществляется при участии специальных ферментов в определенных участках клеток.

    Первый этап – подготовительный. У человека и животных в процессе пищеварения крупные молекулы пищи, включающие олиго-, полисахариды, липиды, белки, нуклеиновые кислоты, распадаются на более мелкие молекулы – глюкозу, глицерин, жирные кислоты, аминокислоты, нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты. Эти молекулы всасываются в кишечнике в кровь и доставляются в различные органы и ткани, где могут служить как строительным материалом для синтеза новых веществ, необходимых организму, так и для обеспечения организма энергией.

    Второй этап – бескислородный, или неполный, анаэробное дыхание (гликолиз или брожение). Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению.

Гликолиз – один из центральных путей катаболизма глюкозы, когда расщепление углевода с образованием АТФ происходит в бескислородных условиях. У аэробных организмов (растения, животные) это одна из стадий клеточного дыхания, у микроорганизмов – брожение – основной способ получения энергии. Ферменты гликолиза локализованы в цитоплазмы. Процесс протекает в два этапа при отсутствии кислорода.

1). Подготовительный этап – происходит активирование молекул глюкозы в результате присоединения фосфатных групп, идущее с затратой АТФ, с образованием двух 3-углеродных молекул глицеральдегидфосфата.

2), окислительно-восстановительный этап – идут ферментативные реакции субстратного фосфорилирования, когда происходит извлечение энергии в виде АТФ непосредственно в момент окисления субстрата. Так, молекула глюкозы подвергается дальнейшему ступенчатому расщеплению и окислению до двух 3-углеродных молекул пировиноградной кислоты. В суммарной виде процесс гликолиза выглядит так:

С 6 Н 12 О 6 + 2 Н 3 РО 4 + 2 АДФ → 2 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О

На этапе окисления глюкозы отщепляются протоны и электроны запасаются в форме НАДН. В мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы ПВК, которые затем восстанавливаются в молочную кислоту с использованием восстановленного НАДН. У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

С 6 Н 12 О 6 + 2 Н 3 РО 4 + 2 АДФ → 2 С 3 Н 5 ОН + 2 СО 2 + 2 АТФ + 2 Н 2 О

У других микроорганизмов расщепление глюкозы – гликолиз может завершаться образованием ацетона, уксусной кислоты и др.

Во всех случаях распад одной молекулы глюкозы сопровождается образованием 4 молекул АТФ. При этом в реакциях расщепления глюкозы 2 молекулы АТФ затрачиваются. Таким образом, в ходе бескислородного расщепления глюкозы образуется 2 молекулы АТФ. В целом энергетическая эффективность гликолиза невелика, т.к. 40% энергии сохраняется в виде химической связи в молекуле АТФ, а остальная энергия рассеивается в виде теплоты.

    Третий этап – стадия кислородного расщепления, или аэробного дыхания. Аэробное дыхание осуществляется в митохондриях клетки при доступе кислорода. Процесс клеточного дыхания также состоит из 3 этапов.

    Окислительное декарбоксилирование ПВК, образующейся на предыдущем этапе из глюкозы и поступающей в матрикс митохондрий. При участии сложного ферментного комплекса отщепляется молекула углекислого газа и образуется соединение ацетил-коэнзим А, а также НАДН.

    Цикл трикарбоновых кислот (Цикл Кребса). Этот этап включает большое число ферментативных реакций. Внутри матрикса митохондрий ацетил-коэнзим А (который может образовываться из различных веществ) расщепляется с высвобождением еще одной молекулы углекислого газа, а также образованием АТФ, НАДН и ФАДН. Углекислый газ поступает в кровь и удаляется из организма через органы дыхания. Энергия, запасенная в молекулах НАДН и ФАДН, используется для синтеза АТФ на следующем этапе клеточного дыхания.

    Окислительное фосфорилирование – многоступенчатый перенос электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, встроенной во внутреннюю мембрану митохондрий, на конечный акцептор кислород, сопряженный с синтезом АТФ. В состав цепи транспорта электронов входит ряд компонентов: убихинон (коэнзим Q), цитохромы b, c, a, выступающие переносчиками электронов. В результате функционирования электрон-транспортной цепи атомы водорода от НАДН и ФАДН разделяются на протоны и электроны. Электроны постепенно переносятся на кислород, так образуется вода, а протоны перекачиваются в межмембранное пространство митохондрий, используя энергию потока электронов. Затем протоны возвращаются в матрикс митохондрий, проходя через специальные каналы в составе встроенного в мембрану фермента АТФ-синтетазы. При этом образуется АТФ из АДФ и фосфата. В цепи транспорта электронов есть 3 участка сопряжения окисления и фосфорилирования, т.е. мест образования АТФ. Механизм образования энергии и виде АТФ в митохондриях объясняется хемиосмотической теорией П. Митчелла. Кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так?

С 6 Н 12 О 6 + 6О 2 + 38 Н 3 РО 4 +38 АДФ → 6 СО 2 + 6 Н 2 О + 38 АТФ

Таким образом, при полном окислении одной молекулы глюкозы до конечных продуктов – углекислого газа и воды при доступе кислорода образуется 38 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Сходство между фотосинтезом и аэробным дыханием:

    Необходим механизм обмена углекислого газа и кислорода.

    Необходимы специальные органеллы (хлоропласты, митохондрии).

    Необходима цепь транспорта электронов, встроенная в мембраны.

    Происходит преобразование энергии (синтез АТФ в результате фосфорилирования).

    Происходят циклические реакции (цикл Кальвина, цикл Кребса).

Различия между фотосинтезом и аэробным дыханием:

Фотосинтез

Аэробное дыхание

Анаболический процесс, в результате которого из простых неорганических соединений синтезируются молекулы углеводов.

Процесс диссимиляции, в результате которого молекулы углеводов расщепляются до простых неорганических соединений.

Энергия АТФ накапливается и запасается в углеводах.

Энергия запасается в виде АТФ.

Кислород выделяется.

Кислород расходуется.

Углекислый газ и вода потребляются.

Углекислый газ и вода выделяются.

Происходит увеличение органической массы.

Происходит уменьшение органической массы.

У эукариот процесс протекает в хлоропластах.

У эукариот процесс протекает в митохондриях.

Происходит только в клетках, содержащих хлорофилл, на свету.

Происходит во всех клетках в течение жизни непрерывно.

 

Возможно, будет полезно почитать: