Импульсный блок питания на двух транзисторах. Импульсный бп. К недостаткам импульсной технологии следует отнести

Импульсный источник питания – электронная схема, где входное напряжение выпрямляется, фильтруется, нарезается пачками импульсов высокой частоты для передачи через малогабаритный трансформатор. Блок становится управляемым, с гибко подстраиваемыми параметрами. Уменьшается масса самой тяжелой части источника – трансформатора. В англоязычной литературе такие приборы именуются Switching-Mode Power Supply (SMPS).

Прибор SMPS (импульсный источник питания)

Появление импульсных источников питания

Размеры трансформаторов волновали еще Теслу. Ученый повторяя опыт за опытом, установил: высокие частоты тока безопасны для человека, провоцируют большие потери в сердечниках трансформаторов. Результатом споров стало принятие частоты 60 Гц для строительства Ниагарской ГЭС. Начали с Николы Тесла, потому что это первый человек, который понял, что быстрые колебания механическим способом не получишь. Следовательно, приходится использовать колебательные контуры. Так появился трансформатор Тесла (22 сентября 1896 года), при помощи которого ученый задумал передавать на расстояние сообщения и энергию.

Суть изобретения описана в разделе про , приведем краткие сведения. Трансформатор образован двумя частями, включенными последовательно. Первичная обмотка первого подключалась к источнику переменного напряжения сравнительно низкой частоты. Благодаря низкому коэффициенту трансформации происходил заряд конденсатора, подключенного ко вторичной обмотке, до высокого потенциала. Напряжение достигало порога, пробивался разрядник, включенный параллельно конденсатору. Начинался колебательный процесс разряда через первичную обмотку второго трансформатора во внешнюю цепь. Тесла получал напряжения радиодиапазона амплитудой миллионы вольт.

Первые шаг в создании импульсных блоков питания, где напряжение сравнительно низкой частоты преобразуется в импульсы. Аналогичную конструкцию создал в 1910 году Чарльз Кеттеринг, оборудуя системы зажигания автомобилей. Импульсные блоки питания появились в 60-е годы. Идея минимизации размеров трансформаторов (после Николы Тесла) выдвинута компанией General Electric в 1959 году в лице Джозефа Мерфи и Фрэнсиса Старчеца (U.S. Patent 3,040,271). Идея не сразу нашла горячий отклик (отсутствовала подходящая элементная база), в 1970 году компания Тектроникс выпустила линейку осциллографов с новым источником питания.

Двумя годами позже инверторы находят применение в электронике (Patent US3697854 A), главное – появляются первые отечественные модели! Патенты ссылаются друг на друга, невозможно понять, кто первым предложил использовать идею в персональных компьютерах. В СССР разработки начались в 1970 году, связано с появлением в продаже высокочастотного мощного германиевого транзистора 2Т809А. Как оговаривается в литературе, первым в 1972 году добился успеха москвич, кандидат технических наук Л. Н. Шаров. Позже появился импульсный блок питания 400 Вт авторством А. И. Гинзбурга, С. А. Эраносяна. Вычислительные машины ЕС новинкой оборудованы в 1976 году коллективом под руководством Ж. А. Мкртчяна.

Первые импульсные блоки питания, известные отечественному потребителю по цифровым телевизорам и видеомагнитофонам, часто ломались, современные изделия лишены недостатка – работают непрерывно годами. Момент начала 90-х годов снабжает следующими сведениями:

  1. Удельная мощность: 35 — 120 Вт на кубический дециметр.
  2. Рабочая частота инвертора: 30 — 150 кГц.
  3. КПД: 75 — 85%.
  4. Время наработки на отказ: 50 — 200 тысяч часов (6250 рабочих дней).

Достоинства импульсных блоков питания

Линейные источники питания громоздкие, эффективность хромает. КПД редко превышает 30%. Для импульсных блоков питания средние цифры лежат в диапазоне 70 — 80%, существуют изделия, сильно выбивающиеся из ряда. В лучшую сторону, разумеется. Приводятся сведения: КПД импульсного блока питания достигает 98%. Одновременно снижаются требуемые фильтрации емкости конденсаторов. Энергия, запасаемая за период, сильно падает с повышением частоты. Зависит прямо пропорционально от ёмкости конденсатора, квадратично от амплитуды напряжения.

Повышение до частоты 20 кГц (в сравнении с 50/60) снижает линейные размеры элементов в 4 раза. Цветочки в сравнении с ожиданиями в радиодиапазоне. Объясняет причину оснащения приемников конденсаторами малого размера.

Устройство импульсных источников питания

Входное напряжение выпрямляется. Процесс осуществляет диодный мост, реже одиночный диод. Затем напряжение нарезается импульсами, здесь литература бодро переходят к описанию трансформатора. Читателей наверняка мучает вопрос – как работает чоппер (устройство, формирующее импульсы). На основе микросхемы, питающейся непосредственно сетевым напряжением 230 вольт. Реже специально ставится стабилитрон (стабилизатор параллельного типа).

Микросхема формирует импульсы (20 — 200 кГц), сравнительно малой амплитуды, управляющие тиристором или иным полупроводниковым силовым ключом. Тиристор нарезает высокое напряжение импульсами, по гибкой программе, формируемой микросхемой генератора. Поскольку на входе действует высокое напряжения, нужна защита. Генератор охраняется варистором, сопротивление которого резко падает при превышении порога, замыкая вредный скачок на землю. С силового ключа пачки импульсов поступают на малогабаритный высокочастотный трансформатор. Линейные размеры сравнительно невысоки. Для компьютерного блока питания мощностью 500 Вт умещается детской ладонью.

Полученное напряжения вновь выпрямляется. Используются диоды Шоттки, спасибо низкому падению напряжения перехода металл-полупроводник. Спрямленное напряжение фильтруется, подается потребителям. Благодаря наличию множества вторичных обмоток достаточно просто получаются номиналы различной полярности и амплитуды. Рассказ неполон без упоминания цепи обратной связи. Выходные напряжения сравниваются с эталоном (например, стабилитрон), происходит подстройка режима генератора импульсов: от частоты, скважности зависит передаваемая мощность (амплитуда). Изделия считаются сравнительно неприхотливыми, могут функционировать в широком диапазоне питающих напряжений.

Корпусной блок питания

Технология носит название инверторной, используется сварщиками, микроволновыми печами, индукционными варочными панелями, адаптерами сотовых телефонов, iPad. Компьютерный блок питания работает подобным образом.

Схемотехника импульсных блоков питания

Природой предоставлено 14 базовых топологий реализации импульсных блоков питания. С присущими достоинствами, уникальными характеристиками. Некоторые подходят созданию маломощных блоков питания (ниже 200 Вт), другие лучшие качества проявляют при питании сетевым напряжением 230 вольт (50/60 Гц). И чтобы выбрать нужную топологию, сумейте представить свойства каждой. Исторически первыми называют три:

  • Buck – бак, олень, доллар.
  • Boost – ускорение.
  • Polarity inverter – инвертор полярности.

Три топологии относятся к линейным регуляторам. Тип приборов считается предшественником импульсных блоков питания, не включая достоинств. Напряжение подается через трансформатор, спрямляется, нарезается на силовом ключе. Работой регулятора заведует обратная связь, в задачи которой входит формирование сигнала ошибки. Тип приборов составлял многомиллиардный оборот в 60-е годы, мог лишь понижать напряжение, а общий провод потребителя замыкался с сетью питания.

Buck топология

Так появились «олени». Первоначально предназначенные для постоянного напряжения нарезали входной сигнал импульсами, затем пачки спрямлялись, фильтровались с получением средней мощности. Обратная связь контролировала скважность, частоту (широтно-импульсная модуляция). Аналогичное делается сегодня компьютерными блоками питания. Практически сразу были достигнуты значения плотности мощности 1 — 4 Вт на кубический дюйм (впоследствии до 50 Вт на кубический дюйм). Прелестно, что стало можно получать множество выходных напряжений, развязанных со входом.

Недостатком сочтем потери в момент переключения транзистора, напряжение меняет полярность, остается ниже нуля до следующего импульса. Указанная часть сигнала, минуя диод, замыкается на землю, не доходя фильтра. Обнаружено существование оптимальных частот переключения, при которых издержки минимизируются. Диапазон 25 — 50 кГц.

Boost топология

Топология именуется кольцевым дросселем, ставится вперед ключа. Удается повысить входное напряжение до нужного номинала. Схема работает следующим образом:

  1. В начальный момент времени транзистор открыт, дроссель запасается энергией источника напряжения через коллекторный, эмиттерный p-n-переходы, землю.
  2. Затем ключ запирается, стартует процесс зарядки конденсатора. Дроссель отдает энергию.
  3. В некоторый момент отрабатывает усилитель обратной связи, начинается питание нагрузки. Конденсатор неспособен отдать энергию в сторону силового ключа, мешает диод. Заряд забирает полезная нагрузка.
  4. Падение напряжения вызовет повторное срабатывание цепи обратной связи, начнется накопление энергии дросселем.

Polarity Inverter топология

Топология полярного инвертора похожа на предыдущую схему, дроссель расположен за ключом. Работает следующим образом:

В этом случае наблюдаем параллельность процессов запасания/расходования энергии. Все три рассмотренные схемы демонстрируют следующие недостатки:

  1. Имеется связь по постоянному току между входом и выходом. Другими словами, отсутствует гальваническая развязка.
  2. Невозможно получить несколько номиналов напряжений из одной схемы.

Минусы устраняются двухтактной тяни-толкай (push-pull), запаздывающей (latter) топологиями. Обе используют чоппер с технологией опережения (forward). В первом случае используется дифференциальная пара транзисторов. Становится возможным использовать один ключ на половину периода. Для управления нужна специальная формирующая схема, попеременно раскачивающая эти качели, улучшаются условия отвода тепла. Нарезанное напряжение двухполярное, питает первичную обмотку трансформатора, вторичных много – сообразно требованиям потребителей.

В запаздывающей топологии один транзистор заменен диодом. Схема часто эксплуатируется маломощными блоками питания (до 200 Вт) с постоянным напряжением на выходе 60 — 200 В.

Принцип реализации вторичной мощности за счёт применения дополнительных устройств, обеспечивающих энергией схемы, уже достаточно давно используется в большей части электроприборов. Этими устройствами являются блоки питания . Они служат для преобразования напряжения до необходимого уровня. БП могут быть как встроенными, так и отдельными элементами. Принципов преобразования электроэнергии существует два. Первый основан на применении аналоговых трансформаторов, а второй основан на использовании импульсных блоков питания. Разница между этими принципами довольно большая, но, к сожалению, не все её понимают. В этой статье разберёмся, как работает импульсный блок питания и чем же он так отличается от аналогового. Давайте же начнём. Поехали!

Первыми появились именно трансформаторные БП. Их принцип работы заключается в том, что они меняют структуру напряжения с помощью силового трансформатора, который подключён к сети 220 В. Там снижается амплитуда синусоидальной гармоники, которая направляется дальше к выпрямительному устройству. Затем происходит сглаживание напряжения параллельно подключенной ёмкостью, которая подбирается по допустимой мощности. Регулирование напряжения на выходных клеммах обеспечивается благодаря смене положения подстроечных резисторов.

Теперь перейдём к импульсным БП. Они появились несколько позже, однако, сразу завоевали немалую популярность за счёт ряда положительных особенностей, а именно:

  • Доступности комплектования;
  • Надёжности;
  • Возможности расширить рабочий диапазон для выходных напряжений.

Все устройства, в которых заложен принцип импульсного питания, практически ничем не отличаются друг от друга.

Элементами импульсного БП являются:

  • Линейный источник питания;
  • Источник питания Standby;
  • Генератор (ЗПИ, управление);
  • Ключевой транзистор;
  • Оптопара;
  • Цепи управления.

Чтобы подобрать блок питания с конкретным набором параметров, воспользуйтесь сайтом ChipHunt.

Давайте, наконец, разберёмся, как работает импульсный блок питания. В нём применяются принципы взаимодействия элементов инверторной схемы и именно благодаря этому достигается стабилизированное напряжение.

Сперва на выпрямитель поступает обычное напряжение 220 В, далее происходит сглаживание амплитуды при помощи конденсаторов ёмкостного фильтра. После этого выполняется выпрямление проходящих синусоид выходным диодным мостом. Затем происходит преобразование синусоид в импульсы высоких частот. Преобразование может выполняться либо с гальваническим отделением сети питания от выходных цепей, либо без выполнения такой развязки.

Если БП с гальванической развязкой, то сигналы высокой частоты направляются на трансформатор, который и осуществляет гальваническую развязку. Для увеличения эффективности трансформатора повышается частота.

Работа импульсного БП основана на взаимодействии трёх цепочек:

  • ШИМ-контроллера (управляет преобразованием широтно-импульсной модуляции);
  • Каскада силовых ключей (состоит из транзисторов, которые включаются по одной из трёх схем: мостовой, полумостовой, со средней точкой);
  • Импульсного трансформатора (имеет первичную и вторичную обмотки, которые монтируются вокруг магнитопровода).

Если же блок питания без развязки, то ВСЧ разделительный трансформатор не используется, при этом сигнал подаётся сразу на фильтр низких частот.

Сравнивая импульсные блоки питания с аналоговыми, можно увидеть очевидные преимущества первых. ИБП имеют меньший вес, при этом их КПД значительно выше. Они имеют более широкий диапазон питающих напряжений и встроенную защиту. Стоимость таких БП, как правило, ниже.

Из недостатков можно выделить наличие высокочастотных помех и ограничений по мощности (как при высоких, так и при низких нагрузках).

Проверить ИБП можно при помощи обычной лампы накаливания. Обратите внимание, что не следует подключать лампу в разрыв удалённого транзистора, поскольку первичная обмотка не рассчитана на то, чтобы пропускать постоянный ток, поэтому ни в коем случае нельзя допускать его пропускания.

Если лампа светится, значит, БП работает нормально, если же не светится, то блок питания не работает. Короткая вспышка говорит о том, что ИБП блокируется сразу после запуска. Очень яркое свечение свидетельствует об отсутствии стабилизации выходного напряжения.

Теперь вы будете знать на чём основан принцип работы импульсного и обычного аналогового блоков питания. Каждый из них имеет свои особенности строения и работы, которые следует понимать. Также вы сможете проверить работоспособность ИБП при помощи обычной лампы накаливания. Пишите в комментариях была полезной для вас эта статья и задавайте любые интересующие вопросы по рассмотренной теме.

ДАННЫЙ МАТЕРИАЛ СОДЕРЖИТ БОЛЬШОЕ КОЛИЧЕСТВО АНИМИРОВАННЫХ ПРИЛОЖЕНИЙ!!!

Для браузера Microsoft Internet Extlorer необходимо временно выключить некоторые функции, а именно:
- выключить интегрированные бары от Яндекса, Гугла и т.д.
- выключить строку состояния (снять галочку):

Выключить адресную строку:

По желанию можно выключить и ОБЫЧНЫЕ КНОПКИ, но получившейся площади экрана уже достаточно

В остальном больше ни каких регулировок производить не нужно - управление материалом производится при помощи встроенных в материал кнопок, а убранные панели вы всегда можете вернуть на место.

ПРЕОБРАЗОВАНИЕ ЭЛЕКТРИЧЕСТВА

Прежде чем приступить к описанию принципа работы импульсных источников питания следует вспомнить некоторые детали из общего курса физики, а именно что такое электричество, что такое магнитное поле и как они зависят друг от друга.
Сильно глубоко мы не будем углублятся и о причинах возникновения электричества в различных объектах мы тоже умолчим - для этого нужно просто тупо перепечатать 1/4 курса физики, поэтому будем надеятся, что читатель знает что такое электричество не по надписям на табличах "НЕ ВЛЕЗАЙ - УБЬЕТ!". Однако для начала напомним какое оно бывает, это самое электричество, точнее напряжение.

Ну а теперь, чисто теоритически, предположим, что в качестве нагрузки у нас выступает проводник, т.е. самый обычный отрезок провода. Что происходит в нем, когда через него протекает ток наглядно показанно на следующем рисунке:

Если с проводником и магнитным полем вокруг него все понятно, то сложим проводник не в кольцо, а в несколько колец, чтобы наша катушка индуктивности проявила себя активней и посмотрим что будет происходить дальше.

На этом самом месте имеет смысл попить чаю и дать мозгу усвоить только что узнанное. Если же мозг не устал, или же эта информация уже известна, то смотрим дальше

В качестве силовых транзисторов в импульсных блока питания используются биполярные транзисторы, полевые(MOSFET) и IGBT. Какой именно силовой транзистор использовать решает только производитель устройств, поскольку и те, и другие и третьи имеют и свои достоинства, и свои недостатки. Однако было бы не справедливым не заметить, что биполярные транзисторы в мощных источника питания практически не используются. Транзисторы MOSFET лучше использовать при частотах преобразования от 30 кГц до 100 кГц, а вот IGBT "любят частоты пониже - выше 30 кГц уже лучше не использовать.
Биполярные транзисторы хороши тем, что они довольно быстро закрываются, поскольку ток коллектора зависит от тока базы, но вот в открытом состоянии имеют довольно большое сопротивление, а это означает, что на них будет довольно большое падение напряжения, что однозначно ведет к лишнему нагреву самого транзистора.
Полевые имеют в открытом состоянии очень маленькое активное сопротивление, что не вызывает большого выделения тепла. Однако чем мощнее транзистор, тем больше его емкость затвора, а для ее зарядки-разрядки требуются довольно большие токи. Данная зависимость емкости затвора от мощности транзистора вызвана тем, что используемые для источников питания полевые транзисторы изготавливаются по технологии MOSFET, суть которой заключается в использовании параллельного включения нескольких полевых транзисторов с изолированным затвором и выполненных на одном кристалле. И чем мощенее транзистор, тем большее количество параллельных транзисторов используется а емкости затворов суммируются.
Попыткой найти компромисс являются транзисторы, выполненные по технологии IGBT, поскольку являются составными элементами. Ходят слухи, что получилисьони чисто случайно, при попытке повторить MOSFET, но вот вместо полевых транзисторов, получились не совсем полевые и не совсем биполярные. В качестве управляющего электрода выступает затвор встроенного внутрь полевого транзистора не большой мощности, который своими истоком-стоком уже управляет током баз мощных биполярных транзисторов, включенных параллельно и выполненных на одном кристалле данного транзстора. Таким образом получается довольно маленькая емкость затвора и не очень большое активное сопротивление в открытом состоянии.
Основных схем включения силовой части не так уж и много:
АВТОГЕНЕРАТОРНЫЕ БЛОКИ ПИТАНИЯ . Используют положительную связь, обычно индукционную. Простота подобных источников питания накладывает на них некоторые ограничения - подобные источники питания "любят" постоянную, не меняющуюся нагрузку, поскольку нагрузка влияет на параметры обратной связи. Подобные источники бывают как однотактные, так и двухтактные.
ИМПУЛЬСНИНЫЕ БЛОКИ ПИТАНИЯ С ПРИНУДИТЕЛЬНЫМ ВОЗБУЖДЕНИЕМ . Данные источники питания так же делятся на однотактыные и двухтактные. Первые хоть и лояльней относятся к меняющейся нагрузке, но все же не очень устойчиво поддерживают необходимый запас мощности. А аудиотехника имеет довольно большой разброс по потреблению - в режиме паузы усилитель потребляет единицы ватт (ток покоя оконечного каскада), а на пиках аудиосигнала потребление может достигать десятков или даже сотен ватт.
Таким образом единственным, максимально приемлемым вариантом импульсных источником питания для аудиотехники является использование двухтактных схем с принудительным возбуждением. Так же не стоит забывать о том, что при высокочастотном преобразовании необходимо уделять более тщательное внимание к фильтрации вторичного напряжения, поскольку появление помех по питанию в звуковом диапазоне сведут на нет все старания по изготовлению импульсного источника питания для усилителя мощности. По этой же причине частота преобразования уводится по дальше от звукового диапазона. Самой популярной частотой преобразования раньше была частота в районе 40 кГц, но современная элементная база позволяет производить преобразование на частотах гораздо выше - вплоть до 100 кГц.
Различают два базовых вида данных импульсных источников - стабилизированные и не стабилизированные.
Стабилизированные источники питания используют широтноимпульсную модуляцию, суть которой заключается в формровании выходного напряжения за счет регулировки длительности подаваемого в первиную обмотку напряжения, а компенсация отсутствия импульсов осуществляется LC цепочками, включенными на выходе вторичного питания. Большим плюсом стабилизированных источников питания является стабильность выходного напряжения, не зависящая ни от входного напряжения сети 220 В, ни от потребляемой мощности.
Не стабилизированные просто управляют силовой частью с постоянной частотой и длительностью импульсов и от обычного трансформатора отличаются лишь габаритами и гораздо меньшими емкостями конденсаторов вторичного питания. Выходное напряжение напрямую зависит от сети 220 В, и имеет небольшую зависисмость от потребляемой мощности (на холостом ходу напряжение несколько выше рассчетного).
Самыми популярными схемами силовой части импульсных источников питания являются:
Со средней точкой (ПУШ-ПУЛЛ). Используются обычно в низковольтных источниках питания, поскольку имеет некоторые особенности в требованиях к элементной базе. Диапазон мощностей довольно большой.
Полумостовые . Самая популярная схема в сетевых ипульсных источниках питания. Диапазон мощностей до 3000 Вт. Дальнейшее увеличение мощности возможно, но уже по стоимости доходит до уровня мостового варианта, поэтому несколько не экономично.
Мостовые . Данная схема не экономична на малых мощностях, поскольку содержит удвоенное количество силовых ключей. Поэтому чаще всего используется на мощностях от 2000 Вт. Максимальные мощности находятся в пределах 10000 Вт. Данная схемотехника является основной при изготовлении сварочных аппаратов.
Рассмотрим подробнее кто есть кто и как работает.

СО СРЕДНЕЙ ТОЧКОЙ

Как было показанно - данную схемотехнику силовой части не рекомендуется использовать для создания сетевых источников питания, однако НЕ РЕКОМЕНДУЕТСЯ не значит НЕЛЬЗЯ. Просто необходимо более тщательно подходить к выбору элементной базы и изготовлению силового трансформатора, а так же учитывать довольно большие напряжения при разводке печатной платы.
Максимальную же популярность данный силовой каскад получил в автомобильной аудитехнике, а так же в источниках бесперебойного питания. Однако на этом поприще данная схемотехника притерпевает некоторые неудобства, а именно ограничение максимальной мощности. И дело не в элементной базе - на сегодня совсем не являются дефицитными MOSFET транзисторы с мгновенными значениями тока сток-исток в 50-100 А. Дело в габаритной мощности самого трансформатора, а точнее в первичной обмотке.
Проблема заключается... Впрочем для большей убедительности воспользуемся программой расчетов моточных данных высокочастотных трансформаторов.
Возьмем 5 колец типоразмера К45х28х8 с проницаемостью M2000HM1-А, заложем частоту преобразования 54 кГц и первичную обмотку в 24 В (две полуобмотки по 12 В) В итоге получаем, что мощность данный сердечник сможет развить 658 вт, но вот первичная обмотка должна содержать 5 витков, т.е. по 2,5 витка на одну полуобмотку. Как то не естественно маловато... Однако стоит поднять частоту преобразорвания до 88 кГц как получится всего 2 (!) витка на полуобмотку, хотя мощность выглядит весьма заманчиво - 1000 Вт.
Вроде с такими результатами можно смириться и равномерно по всему кольцу распределить 2 витка тоже, если сильно постараться, можно, но вот качество феррита оставляет желать лучшего, да и M2000HM1-А на частотах выше 60 кГц уже сам по себе греется довольно сильно, ну а на 90 кГц его уже обдувать надо.
Так что как не крути, но получается замкнутый круг - увеличивая габариты для получения большей мощности мы слишком сильно уменьшаем количество витков первичной обмотки, увеличивая частоту мы опять же уменьшаем количество витков первичной обмотки, но еще в довеско получаем лишнее тепло.
Именно по этой причине для получения мощностей свыше 600 Вт используют сдвоенные преобразователи - один модуль управления выдает управляющие импульсны на два одинаковых силовых модуля, содержащих два силовых трансформатора. Выходные напряжения обоих трансформаторов суммируются. Именно таким способом организуется питания сверхмощных автмобильных усилителей заводского производства и с одного силовго модуля снимается порядка 500..700 Вт и не более. Способов суммирования несколько:
- суммирования переменного напряжения. Ток в первичные обмотки трансформаторов подается синхронно, следовательно и выходные напряжения синхронны и могут соединяться последовательно. Соединять вторичные обмотки параллельно от двух трансформаторов не рекомендуется - небольшая разница в намотке или качестве феррита приводит в большим потерям и снижению надежности.
- суммирование после выпрямителей, т.е. постоянного напряжения. Самый оптимальный вариант - один силовой модуль выдает положительное напряжение для усилителя мощности, а второй - отрицательное.
- формирование питания для усилителей с двух уровневым питанием сложением двух идентичных двухполярных напряжений.

ПОЛУМОСТОВАЯ

Полумостовая схема имеет довольно много достоинств - проста, следовательно надежна, легка в повторении, не содержит дефицитных деталей, может выполняться как на биполярных, так и на полывых транзисторах. Транзисторы IGBT в ней тоже прекрано работают. Однако слабое место у нее есть. Это проходные конденсаторы. Дело в том, что при больших мощностях через них протекает довольно большой ток и качество готового импульсного источника питания на прямую зависит от качества именно этого компонента.
А проблема заключается в том, что конденсаторы постоянно перезаряжаются, следовательно они должны иметь минимальное сопротивление ВЫВОД-ОБКЛАДКА, поскольку при большом сопротивлении на этом участке будет выделяться довольно много тепла и в конце концов вывод просто отгорит. Поэтому в качестве проходных конденсаторов необходимо использовать пленочные конденсаторы, причем емкость одного конденсатора может достигать емкости 4,7 мкФ в крайнем случае, если используется один конденсатор - схема с одни кондлесатром тоже довольно часто используется, по принципу выходного каскада УМЗЧ с однполярным питанием. Если же используются два конденсатора на 4,7 мкФ (точка их соединения подключена к обмотке трансформатора, а свободные выводы к плюсовой и минусовой шинам питания), то данная комплектация вполне пригодна для питания усилителей мощности - суммарная емкость для переменного напряжения преобразования складывает и в итоге получается равной 4,7 мкФ + 4,7 мкФ = 9,4 мкФ. Однако данный вариант не расчитан для догосрочного непрерывного использования с максимальной нагрузкой - необходимо разделять суммарную емкость на несколько конденсаторов.
При необходимости получения больших емкостей (низкая частота преоразования) лучше использовать несколько конденсаторов меньшей емкости (например 5 штук по 1 мкФ соединенных параллельно). Однако большое количество включенных параллельно конденсаторов довольно сильно увеличивает габариты устройства, да и суммарная стоимость все гирлянды конденсаторов получается не маленькой. Поэтому, при необходимости получить большую мощность имеет смысл воспользоваться мостовой схемой.
Для полумостового варианта мощности выше 3000 Вт не желательны - уж больно громоздкими будут платы с проходными конденсаторами. Использование в качестве проходных конденсаторов электролитических имеет смысл, но лишь на мощностях до 1000 Вт, посокольку на больших частотах электролиты не эффективны и начинаю греться. Бумажные конденсаторы в каестве проходных показали себя очень хорошо, но вот их габариты...
Для большей наглядности мы приводим таблицу зависимости реактивного сопротивления конденсатора от частоты и емкости (Ом):

Емкость конденсатора

Частота преобразования

На всякий случай напоминаем, что при использовании двух конденсаторо (один на плюс, второй на минус) финальная емкость будет равна сумме емкостей этих конденсаторов. Итоговое сопротивление не выделает тепла, поскольку реактивное, но может повлиять на КПД источника питания при максимальных нагрузках - напряжение на выходе начнет уменьшаться, не смотря на то, что габаритная мощность силового трансформатора вполне достаточна.

МОСТОВАЯ

Мостовая схема пригодна для любых мощностей, но наиболее эффективна на больших мощностях (для сетевых источников питания это мощности от 2000 Вт). Схема содержит две пары силовых транзисторов, управляемых синхроно, но необходимость гальванической развязки эмиттеров верхенй пары вносит некоторые неудобства. Однако эта проблема вполне решаема при использовании трансформаторов управления или же специализированных микросхем, например для полевых транзисторов вполен можно использовать IR2110 - специализированная разработка компании International Rectifier .

Однако силовая часть не имеет ни какого смысла, если ею не управляет модуль управления.
Специализированных микросхем, способных управлять силовой частью импульсных источников питания довольно много, однако наиболее удачной разработкой в этой области является TL494, которая появилась еще в прошлом веке, тем не менее не утратила своей актуальности, поскольку содержит ВСЕ необходимые узлы для управления силовой частью импульсных источников питания. О популярности данной микросхемы прежде всего говорит выпуск ее сразу несколькими крупными производителями электронных компонентов.
Рассмотрим принцип действия данной микросхемы, которую с полной ответственностью можно назвать контроллером, поскольку она обладет ВСЕМИ необходимыми узлами.



ЧАСТЬ II

В чем же заключается собственно ШИМ способ регулировки напряжения?
В основу способа положена все таже инерционность индуктивности, т.е. ее не способность мгновенно пропустить ток. Поэтому регулируя длительность импульсов можно изменять финальное постоянное напряжение. Причем для импульсных источников питания это лучше делать в первичных цепях и таким образом экономить средства на создание источника питания, поскольку данный источник будет исполнять сразу две роли:
- преобразование напряжения;
- стабилизацию выходного напряжения.
Причем тепла при этом будет выделяться гораздо меньше по сравнению с линейным стабилизатором, установленным на выходе не стабилизированно импульсного блока питания.
Для больше наглядности стоит посмотреть рисунок, приведенный ниже:

На рисунке приведена схема-эквивалент импульсного стабилизатора в котором в качестве силового ключа выступает генерато прямоугольных импульсов V1, а R1 в качестве нагрузки. Как видно из рисунка при фиксированной амплитуде выходных импульсов в 50 В, изменяя длительность импульсов можно в широких пределах изменять подаваемое на нагрузку напряжение, причем с очень маленькими тепловыми поетрями, зависищами лишь от параметров используемого силового ключа.

С принципами работы силовой части разобрались, с управлением тоже. Осталось соединить оба узла и получить готовый импульсный источник питания.
Нагрузочная способность контроллера TL494 не очень большая, хотя ее хватает для управления одной парой силовых транзисторов типа IRFZ44. Однако для более мощных транзисторов уже необходимы усилители тока, способные развить необходимы тока на управляющих электродах силовых транзисторов. Поскольку мы стараемся снизить габариты источника питания и уйти подальше от звукового диапазона, то оптимальным использованием в качестве силовых транзисторов будут полевые транзисторы, выполненные по технологии MOSFET.


Варианты структур при изготовлении MOSFET.

С одной стороны - для управления полевым транзистором не нужны большие токи - они открываются напряжением. Однако в этой бочке меда есть ложка дегтя, в данном случае заключающаяся в том, что хоть затвор и имеет огромное активное сопротивление, не потребляющее тока для управления транзистором, но затвор имеет емкость. А для ее заряда и разряда как раз и нужны большие токи, поскольку на больших частотах преобразования реактивное сопротивление уже снижается до пределов которые нельзя игнорировать. И чем больше мощность силового MOSFET транзистора тем больше емкость его затвора.
Для примера возьмем IRF740 (400 V, 10A), у которого емкость затвора составляет 1400 пкФ и IRFP460 (500 V, 20 A), у которого емкость затвора составляет 4200 пкФ. Поскольку и у первого, и у второго напряжение затвора не должно быть более ± 20 В, то в качестве управляющих импульсов возьмем напряжение 15 В и посмотрим в симмуляторе что происходит при частоте генератора в 100 кГц на резисторах R1 и R2, которые включены последовательно с конденсаторами на 1400 пкФ и 4200 пкФ.


Тестовый стенд.

При протекании через активную нагрузку тока на ней образуется падение напряжения, по этой величене и можно судить о мгновенных значениях протекающего тока.


Падение на резисторе R1.

Как видно из рисунка сразу при появлении управляющего импульса на резисторе R1 падает примерно 10,7 В. При сопротивлении 10 Ом это означает, что мгновенное значения тока достигает 1, А (!). Как только импульс заканчивается на резисторе R1 падает так же 10,7 В, следовательно и для того, чтобы разрядить конденсатор С1 требуется ток около 1 А..
Для зарядки-разрядки емкости в 4200 пкФ через резистор 10 Ом требуется 1,3 А, поскольку на резисторе 10 Ом падает 13,4 В.

Вывод напрашивается сам собой - для зарядки-разрядки емкостей затворов необходимо, чтобы каска, работающий на затворы силовых транзисторов, выдерживал довольно большие токи, не смотря на то, что суммарное потребление довольно мало.
Для ограничения мгновенных значений тока в затворах полевых транзисторов обычно используют токоограничивающие резисторы от 33 до 100 Ом. Чрезмерное уменьшение этих резисторов повышает мгновенное значение проеткающих токов, а увеличение - увеличивает длительность работы силового транзистора в линейном режиме, что влечет необоснованный нагрев последних.
Довольно часто используется цепочка состоящая из соединенных параллельно резистора и диода. Данная хитрость используется прежде всего для того, чтобы разгрузить управляющий каскад на время зарядки и ускорить разрядку емкости затвора.


Фрагмент однотактного преобразователя.

Таким образом достигается не мгновенное появление тока в обмотке силового трансформатора, а несколько линейное. Хотя это увеличивает температуру силового каскада, но довольно ощутимо снижает выбосы самоидуции, которые неизбежно появляются при подаче прямоугольного напряжения в обмотку трансформатора.


Самоиндукция в работе однотактного преобразователя
(красная линия - напряжение на обмотке трансформатора, синяя - напряжение питания, зеленая - импульсы управления).

Итак с теоритической частью разобрались и можно подвести кое какие итоги:
Для создания импульсного источника питания необходим трансформатор, сердечник у которого изготовлен из феррита;
Для стабилизации выходного напряжения импульсного источника питания необходим ШИМ метод с которым вполне успешно справляется контроллер TL494;
Силовая часть со средней точкой наиболее удобна для низковольных импульсных источников питания;
Силовая часть полумостовой схемотехники удобна для малых и средних мощностей, а ее параметы и надежность во многом зависят от коичества и качества проходных конденсаторов;
Силовая часть мостового типа более выгодна для больших мощностей;
При использовании в силовой части MOSFET не стоит забывать о емкости затворов и расчитывать управляющие элементы силовыми транзисторами с поправками на эту емкость;

Поскольку с отдельными узлами разобрались переходим к финальному варианту импульсного источника питания. Поскольку и алгоритм и схемотехника всех полумостовых источников практически одинакова, то для разъяснения какой элемент для чего нужен разберем по косточкам самый популярный, мощностью 400 Вт, с двумя двуполярными выходными напряжениями.


Осталось отметить некоторые ньюнасы:
Резисторы R23, R25, R33, R34 служат для создания RC-фильтра, который крайне желателен при использовании электролитических конденсаторах на выходе импульсных источниках. В идеале конечно же лучше использовать LС-фильтры, но поскольку "потребители" не очень мощные можно вполне обойтись и RC-фильтром. Сопротивление данных резисторов может использоваться от 15 до 47 Ом. R23 лучше мощностью 1 Вт, остальные на 0,5 Вт вполне достаточно.
С25 и R28 - снабер снижающий выбросы самоиндукции в обмотке силового трансформатора. Наиболее эффективны при емкостях около выше 1000 пкф, но в этом случае на резисторе выделяется слишком много тепла. Необходимы в случае когда после выпрямительных диодов вторичного питания отсутствуют дроссели (подавляющее большинство заводской аппаратуры). Если дроссели используются эффективность снаберов не так заметна. Поэтому мы их ставим крайне редко и хуже источники питания от этого не работают.
Если некоторые номиналы элементов отличаются на плате и принципиальной схеме эти номиналы не критичны - можно использовать и те и другие.
Если на плате имеются элементы отсутствующие на принципиальной схеме (обычно это конденсаторы по питанию) то можно их не ставить, хотя с ними будет лучше. Если же решили устанавливать, то не электролитические конденсаторы можно использовать на 0,1...0,47 мкФ, а электролитические такой же емкости как и те, которые получаются с ними включенными параллельно.
На плате ВАРИАНТ 2 Возле радиаторов имеется прямоугольная часть которая высверливается по периметру и на нее устанавливаются кнопки управления источником питания (вкл-выкл). Необходимость данного отверстия обусловлена тем, что вентилятор на 80 мм не умещается по высоте, для того, чтобы закрепить его к радиатору. Поэтому вентиялтор устанавливается ниже основания печатной платы.

ИНСТРУКЦИЯ ПО САМОСТОЯТЕЛЬНОЙ СБОРКЕ
СТАБИЛИЗИРОВАННОГО ИМПУЛЬСНОГО ИСТОЧНИКА ПИТАНИЯ

Для начала внимательно следует ознакомиться с принципиальной схемой, впрочем это следует делать всегда, перед тем как приступать к сборке. Данный преобразователь напряжения работает по полумостовой схеме. В чем отличие от остальных подробно рассказанно .

Принципиальная схема упакованна WinRAR старой версии и выполнена на странице WORD-2000, поэтому с распечаткой данной страницы проблем возникнуть не должно. Здесь же мы рассмотрим ее фрагментами, поскольку хочется сохранить высокую читаемость схемы, а целиком на эеран монитора она умещается не совсем корректно. На всякий случай можно пользоватся этим чертежом для представления картины в целом, но лучше распечатать...
На рисунке 1 - фильтр и выпрямитель сетевого напряжения. Фильтр предназначен прежде всего для исключения проникновения импульсных помех от преобразователя в сеть. Выполнен на L-C основе. В качестве индуктивности используется ферритовый сердечник любой формы (стержневые лучше не нужно - большой фон от них) с намотанной одинарной обмоткой. Габариты сердечника зависят от мощности источника питания, поскольку чем мощнее источник, тем больше помех он будет создавать и тем лучше нужен фильтр.


Рисунок 1.

Примерные габариты сердечников в зависимости от мощности источника питания сведены в таблицу 1. Обмотка мотается до заполения сердечника, диаметр(ы) провода следует выбирать из расчета 4-5 А/мм кв.

Таблица 1

МОЩНОСТЬ ИСТОЧНИКА ПИТАНИЯ

КОЛЬЦЕВОЙ СЕРДЕЧНИК

Ш-ОБРАЗНЫЙ СЕРДЕЧНИК

Диаметр от 22 до 30 при толщине 6-8 мм

Ширина от 24 до 30 при толщине 6-8 мм

Диаметр от 32 до 40 при толщине 8-10 мм

Ширина от 30 до 40 при толщине 8-10 мм

Диаметр от 40 до 45 при толщине 8-10 мм

Ширина от 40 до 45 при толщине 8-10 мм

Диаметр от 40 до 45 при толщине 10-12 мм

Ширина от 40 до 45 при толщине 10-12 мм

Диаметр от 40 до 45 при толщине 12-16 мм

Ширина от 40 до 45 при толщине 12-16 мм

Диаметр от 40 до 45 при толщине 16-20 мм

Ширина от 40 до 45 при толщине 16-20 мм

Здесь следует немного пояснить почему диаметр (ы ) и что такое 4-5 А/мм кв .
Данная категория источников питания относится в высокочастотной. Теперь вспомним курс физики, а именно то место, в котором говорится, что на высоких частотах ток течет не по всему сечению проводника, а по его поверхности. И чем выше частота, тем большая часть сечения проводника остается не задействованной. По этой причине в импульсных высокочастотных устройствах обмотки выполняют с помощью жгутов, т.е. берется несколько более тонкив проводников и складывается вместе. Затем получившийся жгут немного скручивают вдоль оси, чтобы отдельные проводники не торчали в разные стороны во время намотки и этим жгутом наматывают обмотки.
4-5 А/мм кв означает, что напряженность в проводнике может достигать от четырех до пяти Ампер на квадрантный миллиметр. Этот параметр отвечает за нагрев проводника за счет пандения в нем напряжения, ведь проводник имеет, хоть и не большое, но все же сопротивление. В импульсной технике моточные изделия (дроссели, трансформаторы) имеют сравнительно не большие габариты, следовательно охлаждаться они будут хорошо, поэтому напряженность можно использовать именно 4-5 А/мм кв. А вот для традиционных трансформаторов, выполненных на железе, этот параметр не должен превышать 2,5-3 А/мм кв. Сколько проводов и какого сечения поможет расчитать табличка диаметров. Кроме этого табличка подскажет какую мощность можно получить при использовании того или иного количества проводов имеющегося в наличии провода, если использовать его в качестве первичной обмотки силового трансформатора. Открыть табличку .
Емкость конденсатора С4 должна быть не ниже 0,1 мкФ, если он используется вообще. Напряжение 400-630 В. Формулировка если он используется вообще используется не напрасно - основным фильтром является дроссель L1, а его индуктивность получилась довольно большой и вероятность проникновения ВЧ помех сводится практически до нулевых значений.
Диодный мост VD служит для выпрямления переменного сетевого напряжения. В каечстве диодного моста используется сборка типа RS (торцевые выводы). Для мощности в 400 Вт можно использовать RS607, RS807, RS1007 (на 700 В, 6, 8 и 10 А соответственно), поскольку установочные габариты у этих диодных мостов одинаковые.
Конденсаторы С7, С8, С11 и С12 необходимы для снижения импульсных помех, создаваемых диодами во время приближения переменного напряжения к нулю. Емкость данных конденсаторов от 10 нФ до 47 нФ, напряжение не ниже 630 В. Однако проведя несколько замеров было выяснено, что L1 хорошо справляется и с этими помехами, а для исключения влияния по первичным цепях вполне хватает конденсатора С17. Кроме этого свою лепту вносят и емкости конденсаторов С26 и С27 - для первичного напряжения они являются двумя, соединенными последовательно конденсаторами. Поскольку их номиналы равны, то итоговая емккость делится на 2 и эта емкость уже не только служит для работы силового трансформатора, но еще и подавляет импульсные помехи по первичному питанию. Исходя из этого мы отказались от использования С7, С8, С11 и С12, ну а если кому то уж очень хочется их установить, то на плате, со стороны дорожек места вполне достаточно.
Следующий фрагмент схемы - ограничители тока на R8 и R11 (рисунок 2). Данные резисторы необходимы для снижения тока зарядки электролитических конденсаторов С15 и С16. Данная мера необходима, поскольку в момент включения необходим очень большой ток. Ни предохранитель, ни диодный мост VD не способны, пусть даже кратковременно выдержать такой мощный токовый бросок, хотя индуктивность L1 и ограничивает максимальное значение протекающего тока, в данном случае этого не достаточно. Поэтому используются токоограничивающие резисторы. Мощность резисторов в 2 Вт выбрана не столько из за выделяемого тепла, а по причине довольно широкого резистивного слоя, способного кратковременно выдержать ток в 5-10 А. Для источников питания мощностью до 600 Вт можно использовать резисторы мощностью и 1 Вт, либо использовать один резистор мощностью 2 Вт, необходимо лишь соблюсти условие - суммарное сопротивление даннйо цепи не должно быть меньше 150 Ом и не должно быть больше 480 Ом. При слишком низком сопротивлении увеличивается шанс разрушения резистивного слоя, при слишком выском - увеличивается время заряда С15, С16 и напряжение на них не успеет приблизится к максимальному значению как сработает реле К1 и контактам этого реле придется коммутировать слишком большой ток. Если вместо резисторов МЛТ использовать проволочные, то суммарное сопротивление можно уменьшить до 47...68 Ом.
Емкость конденсаторов С15 и С16 выбирается так же в зависимости от мощности источника. Вычислить необходиму емкость можно воспользовавшись не сложной формулой: НА ОДИН ВАТТ ВЫХОДНОЙ МОЩНОСТИ НЕОБХОДИМ 1 МКФ ЕМКОСТИ КОНДЕНСАТОРОВ ФИЛЬТРА ПЕРВИЧНОГО ПИТАНИЯ . Если есть сомнения в своих математических способностях можно воспользоваться табличкой , в которой просто ставите мощность источника питания, который вы собираетесь изготовить и смотрите сколько и каких конденсаторов Вам необходимо. Обратите внимание на то, что плата расчитана на установку сетевых электролитических конденсаторов диаметром 30 мм .


Рисунок 3

На рисунке 3 показанны гасящие резисторы основная цель которых сформировать стартовое напряжение. Мощность не ниже 2 Вт, на плату устанавливаются парами, друг над дружкой. Сопротивление от 43 кОм до 75 кОм. ОЧЕНЬ желательно, чтобы ВСЕ резисторы были одного номилала - в этом случае тепло распределяется равномерно. Для небольших мощностей используется маленькое реле с небольшим потреблением, поэтому можно обойтись 2 или тремя гасящими резисторами. На плате устанавливаются друг над дружкой.


Рисунок 4

Рисунок 4 - стабилизатор питания модуля управления - в любом корпусе интергарльный стабилизатор на +15В. Необходим радиатор. Размер... Обычно хватает радиатора от предпоследнего каскада отечественных усилителей. Можно попросить что-то в телемастерских - на телевезионных платах обычно 2-3 подходящих радиатора находятся. Второй как раз используется для охлаждения транзистора VT4, управляющего оборотами вентилятора (рисунок 5 и 6). Конденсаторы С1 и С3 можно использовать и 470 мкФ на 50 В, но такая замена подходит лишь для источников питания, использующих определенный тип реле, у которых сопротивление катушки довольно большое. На более мощных источниках используется более мощное реле и уменьшение емкости С1 и С3 крайне не желательно.


Рисунок 5

Рисунок 6

Транзистор VT4 - IRF640. Можно заменить на IRF510, IRF520, IRF530, IRF610, IRF620, IRF630, IRF720, IRF730, IRF740 и т.д.. Главное - он должен быть к орпусе ТО-220, иметь максимальное напряжение не ниже 40 В и максимальный ток не менее 1 А.
Транзистор VT1 - практически любой прямой транзистор с максимальным током более 1 А, желательно с маленьким напряжение насыщения. Одинаково хорошо становятся транзисторы в корпусах ТО-126 и ТО-220, поэтому можно подобрать уйму замен. Если прикрутить небольщой радиатор то вполне подойдет даже КТ816 (рисунок 7).


Рисунок 7

Реле К1 - TRA2 D-12VDC-S-Z или TRA3 L-12VDC-S-2Z . По сути - самое обыкновенное реле с обмоткой на 12 V и контактной группой способной коммутировать 5 А и более. Можно использовать реле, используемые в некоторых телевизрах для включения петли размагничивания, только учтите - контактная группа в подобных реле имеет другую цоколевку и даже если она становится на плату без проблем следует проверить какие выводы замыкаются при подаче напряжения на катушку. Отличаются TRA2 от TRA3 тем, что TRA2 имеют одну контактную группу, способную коммутировать ток до 16 А, а TRA3 имеет 2 контактные группы по 5А.
Кстати сказать - печатная плата предлагается в двух вариантах, а именно с использованием реле и без такового. В варианте без реле не используется система мягкого старта первичного напряжения, поэтому данный вариант пригоден для источника питания мощностью не более 400 Вт, поскольку без токоограничения включать на "прямую" емкость более 470 мкФ крайне не рекомендуется. Кроме того - в качестве диодного моста VD ОБЯЗАТЕЛЬНО должен использоваться мост с максимальным током 10 А, т.е. RS1007. Ну а роль реле в варианте без софт-старта выполняет светодиод. Фунция дежурного режима сохранена.
Кнопки SA2 и SA3 (подразумевается, что SA1 - сетевой выключатель) - кнопки любого типа без фиксации, для которых можно изготовить отдельную печатную плату, а можно закрупить и другим удбным способом. Необходимо помнить, что контакты кнопок гальванически связанны с сетью 220 В , поэтому необходимо исключить вероятность их касания в процессе эксплуатации источника питания .
Аналогов контроллера TL494 довольно много, можно использовать любой, только учтите - у разных производителей возможны некоторые различия параметров. Например при замене одного производителя на другого может измениться частота преобразования, но не сильно, а вот выходное напряжение может измениться вплоть до 15%.
IR2110 в принципе не дефецитный драйвер, да и аналогов у нее не так много - IR2113, но IR2113 имеет большее количество вариантов корпуса, поэтому будьте внимательны - необходим корпус DIP-14.
При монтаже платы вместо микросхем лучше использовать разъемы для микросхем (панельки), идеально - цанговые, но можно и обычные. Данная мера позволит избежать некоторых недоразумений, поскольку брака среди и TL494 (нет выходных импульсов, хотя тактовый генератор работает), и среди IR2110 (нет управляющих импульсов на верхний транзистор) довольно много, так что условия гарантии следует согласовать с продавцом микросхем.


Рисунок 8

На рисунке 8 показана силовая часть. Диоды VD4...VD5 лучше использовать быстрые, например SF16, но при отсутствии таковых HER108 тоже вполне подойдут. С20 и С21 - суммарная емкость не менее 1 мкФ, поэтому можно использовать 2 конденсатора по 0,47 мкФ. Напряжение не менее 50 В, идеально - пленочный конденсатра на 1 мкФ 63 В (в случае пробоя силовых транзисторов пленочный остается целым, а многослойная керамика погибает). Для источников питания мощностью до 600 Вт сопротивление резисторов R24 и R25 может быть от 22 до 47 Ом, поскольку емкости затворов силовых транзисторов не очень велики.
Силовые транзисторы могут быть любыми из приведенных в таблице 2 (корпус ТО-220 или ТО-220Р).

Таблица 2

Наименование

Емкость затвора,
пкФ

Макс напряжение,
В

Макс ток,
А

Тепловая мощн,
Вт

Сопротивление,
Ом


Если тепловая мощность не превышает 40 Вт значит корпус транзистора полностью пластмассовый и требуется теплоотвод большей площади, чтобы не доводить температуру кристалла до критического значения.

Напряжение затвора для всех не более ±20 В

Тиристоры VS1 и VS в принципе марка значения не имеет, главное - максимальный ток должен составлять не менее 0,5 А и корпус должен быть ТО-92. Мы используем либо MCR100-8, либо MCR22-8.
Диоды для слаботочного питания (рисунок 9) желательно выбирать с маленьким временем восстановления. Вполне подойдут диоды серии HER, например HER108, но можно использоваь и другие, например SF16, MUR120, UF4007. Резисторы R33 и R34 на 0,5 Вт, сопротивление от 15 до 47 Ом, причем R33=R34. Служебная обмотка, работающая на VD9-VD10 должна быть рассчитана на 20 В стабилизированного напряжения. В таблице расчета обмоток она отмечена красным.


Рисунок 9

Силовые выпрямительные диоды могут использоваться как в корпусе ТО-220, так и в корпусе ТО-247. В обоих вариантах печатной платы подразумевается, что диоды будут установлены друг над дружкой и с платой соединяться проводниками (рисунок 10). Разумеется, что при установке диодов следует использовать термопасту и изолирующие прокладки (слюду).


Рисунок 10

В качестве выпрямительных диодов желательно использовать диоды с маленьким временем восстановления, поскольку от этого зависит нагрев диодов на холостом ходу (сказывается внутренняю емкость диодов и они просто греются сами по себе, даже без нагрузки). Список вариантов сведен в таблицу 3

Таблица 3

Наименование

Максимальное напряжение,
В

Максимальный ток,
А

Время восстановления,
нано сек

Трансформатор тока выполняет две роли - используется именно как трансформатор тока и как индуктивность, включенная последовательно с первичной обмоткой силового трансформатора, что позволяет несколько снизить скорость появляения тока в первичной обмотке, что ведет к уменьшению выбросов самоиндукции (рисунок 11).


Рисунок 11

Строгих формул для расчета данного трансформатора нет, но вот соблюсти некоторые ограничения настоятельно рекомендуется:

ДЛЯ МОЩНОСТЕЙ ОТ 200 ДО 500 ВТ - КОЛЬЦО ДИАМЕТРОМ 12...18 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 400 ДО 800 ВТ - КОЛЬЦО ДИАМЕТРОМ 18...26 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 800 ДО 1800 ВТ - КОЛЬЦО ДИАМЕТРОМ 22...32 ММ
ДЛЯ МОЩНОСТЕЙ ОТ 1500 ДО 3000 ВТ - КОЛЬЦО ДИАМЕТРОМ 32...48 ММ
КОЛЬЦА ФЕРРИТОВЫЕ, ПРОНИЦАЕМОСТЬЮ 2000, ТОЛЩИНОЙ 6...12 ММ

КОЛИЧЕСТВО ВИТКОВ ПЕРВИЧНОЙ ОБМОТКИ:
3 ВИТКА ДЛЯ ПЛОХИХ УСЛОВИЙ ОХЛАЖДЕНИЯ И 5 ВИТКОВ ЕСЛИ ВЕНТИЛЯТОР ОБДУВАЕТ НЕПОСРЕДСТВЕННО ПЛАТУ
КОЛИЧЕСТВО ВИТКОВ ВТОРИЧНОЙ ОБМОТКИ:
12...14 ДЛЯ ПЕРВИЧНОЙ ИЗ 3-Х ВИТКОВ И 20...22 ДЛЯ ПЕРВИЧНОЙ ИЗ 5-ТИ ВИТКОВ

ГОРАЗДО УДОБНЕЙ ТРАНСФОРМАТОР НАМОТАТЬ СЕКЦИОННО - ПЕРВИЧНАЯ ОБМОТКА НЕ ПЕРЕХЛЕСТЫВАЕТСЯ СО ВТОРИЧНОЙ. В ЭТОМ СЛУЧАЕ ОТМОТАТЬ-ДОМОТАТЬ ВИТОК К ПЕРВИЧНОЙ ОБМОТКЕ НЕ ПРЕДСТАВЛЯЕТ ТРУДА. В ФИНАЛЕ ПРИ НАГРУЗКЕ В 60% ОТ МАКСИМАЛЬНОЙ НА ВЕРХНЕМ ВЫВОДЕ R27 ДОЛЖНО БЫТЬ ПОРЯДКА 12...15 В
Первичная обмотка трансформатора мотается тем же, что и первичная обмотка силового трансформатора TV2, вторичная двойным проводом диаметром 0,15...0,3 мм.

Для изготовления силового трансформатора импульсного блока птания следует воспользоваться программой для расчета импульсных трансформаторов . Конструктив сердечника принципиального значения не имеет - может быть и тороидальным и Ш-образным. Печатные платы позволяют без проблемно использовать и тот и другой. Если габаритной мощности Ш-образного средечника не хватает его можно так же сложить в пакет, как кольца (рисунок 12).


Рисунок 12

Ш-образными ферритами можно разжиться в телемастерских - не чато, но трансформаторы питания в телевизорах выходят из строя. Легче всего найти блоки питания от отечественных телевизоров 3...5-го. Не стоит забывать, что в случае, если требуется трансформатор из двух-трех средечников, то ВСЕ средечники должны быть одной марки, т.е. для разборки необходимо использовать трансформаторы одного типа.
Если силовой трансформатор будет изготовлен из колец 2000, то можно воспользоваться таблицей 4.

РЕАЛИЗАЦИЯ

РЕАЛЬНЫЙ
ТИПОРАЗМЕР

ПАРАМЕТР

ЧАСТОТА ПРЕОБРАЗОРВАНИЯ

МОЖНО БОЛЬШЕ

ОПТИМАЛЬНО

СИЛЬНЫЙ НАГРЕВ

1 КОЛЬЦО
К40х25х11

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

2 КОЛЬЦА
К40х25х11

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

1 КОЛЬЦО
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

2 КОЛЬЦА
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ

ВИТКОВ НА ПЕРВ ОБМОТКУ

3 КОЛЬЦА
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ




ВИТКОВ НА ПЕРВ ОБМОТКУ


4 КОЛЬЦ А
К45х28х8

ГАБАРИТНАЯ МОЩНОСТЬ






ВИТКОВ НА ПЕРВ ОБМОТКУ




КОЛИЧЕСТВО ВИТКОВ ВТОРИЧНОЙ ОБМОТКИ РАСЧИТЫВАЕТСЯ ЧЕРЕЗ ПРОПОРЦИЮ, УЧИТЫВАЯ ТО, ЧТО НАПРЯЖЕНИЕ НА ПЕРВИЧНОЙ ОБМОТКЕ РАВНО 155 В ИЛИ ПРИ ПОМОЩИ ТАБЛИЦЫ (ИЗМЕНЯТЬ ТОЛЬКО ЖЕЛТЫЕ ЯЧЕЙКИ )

Обратите внимание, что стабилизация напряжения осуществляется при помощи ШИМ, следовательно выходное расчетное напряжение вторичных обмоток должно быть минимум на 30 % больше, чем вам необходимо. Оптимальные параметры получаются, когда расчетной напряжение составляет на 50...60% больше, чем необходимо стабилизировать. Например Вам необходим источник с выходным напряжением 50 В, следовательно вторичная обмотка силового трансформатора должна расчитываться на выходное напряжение 75...80 В. В таблице расчетов вторичной обмотки этот коэфициент учтен.
Зависимость частоты преобразования от номиналов С5 и R5 показана на графике:

Использовать довольно большое сопротивление R5 не рекомендуется - слишком большое магнитное поле находится совсем не далеко и возможны наводки. Поэтому остановимся на "среднем" номинале R5 в 10 кОм. При таком сопротивлении частотозадающего резистора получаются следующие частоты преобразования:

Параметры получены у данного производителя

Частота преобразования

(!) Тут следует сказать несколько слов о намотке трансформатора. Довольно часто приходят возмущения, мол при самостоятельном изготовлении источник либо не отдает необходиму мощность, либо силовые транзисторы сильно греются даже без нагрузки.
Откровенно говоря с такой проблемой мы тоже сталкнулись используя кольца 2000, но нам было проще - наличие измерительной аппартуры позволило выяснить в чем причина таких казусов, а она оказалась довольно ожидаемой - магнитная проницаемость феррита не соответсвует маркировки. Другими словами на "слабеньких" трансформаторах пришлось отматывать первичную обмотку, на "греющихся силовых транзисторах" наоборот - доматывать.
Немного позже мы отказалиьс от использования колец, однако тот феррит который мы используем вообще был не макрирован, поэтому пошли на радикальные меры. К собранной и отлаженной плате подключается трансформатор с расчетным количеством витков первичной обмотки и изменяется частота преобразования установленным на плату подстроечным резистором (вместо R5 устанавливается подстроечник на 22 кОм). В момент включения частоат преобразования устанавливается в пределах 110 кГц и начинает снижаться вращением движка подстроечного резистора. Таким образом выясняется частота при которой сердечник начинает входить в насыщение, т.е. когда силовые транзисторы начинают греться без нагрузки. Если частота снижается ниже 60 кГц, то первичная обмотка отматывается, если же температура начинает повышаться на 80 кГц, то первичная обмотка доматывается. Таким образом выясняется количество витков именно для этого сердечника и тоько после этого наматывается вторичная обмотка с использованием предлагаемой выше таблички и на упаковках проставляется количество витков первички для того или иного средечника..
Если качество вашего сердечника вызывает сомнения, то лучше изготовить плату, проверить ее на работоспособность и только после этого изготавливать силовой трансформатор используя описанную выше методику..

Дроссель групповой стабилизации. Кое где даже мелькало суждение, что он ну никак не может работать, поскольку через него протекает постоянное напряжение. С одной стороны подобные суждения верны - напряжение действительно одной полярности, значит может быть опознанно как постоянное. Однако автор подобного суждения не учел тот факт, что напряжение хоть и постонное, но оно пульсирующее и во время работы в данном узле происходит далеко не один процесс (протекание тока), а множество, поскольку дроссель содержит не одну обмотку, а минимум две (если выходное напряжение нужно двуполярное) или 4 обмотки, если необходимо два двуполярных напряжения (рисунок 13).



Рисунок 13

Изготовить дроссель можно и на кольце и на Ш-образхном феррите. Габариты конечно же зависят от мощности. Для мощностей до 400-500 Вт хватает средечника от сетевого фильтра питания телевизоров с 54-х см диагональю и выше (рисунок 14). Конструктив сердечника не принципиален

Рисунок 14

Мотается так же как и силовой трансформатор - из нескольких тонких проводников, свитых в жгут или склеенных в ленту из расчета 4-5 А/мм кв. Теоритически - чем больше витков - тем лучше, поэтому обмотка укладывается до заполнения окна, причем сразу в 2 (если нужен двуполярный источник) или в 4 провода (если нужен источник с двумя двуполярными напряжениями.
После сглаживающих конденсаторов стоят выходные дроссели. Особых требований к ним не предъявляется, габариты... Платы расчитаны на установку сердечников от фильтров сетевого питания телевизоров. Наматывают до заполнения окна, сечение из расчета 4-5 А/мм кв (рисунок 15).



Рисунок 15

Выше упоминалась лента в качетсве обмотки. Здесь следует остановится несколько подробней.
Что лучше? Жгут или лента? И у того и у другого способа есть свои преимущества и недостатки. Изготовление жгута наиболее простой способ - растянул необходимое количество проводов, а затем скрутил их в жгут при помощи дрели. Однако такой способ увеличивает суммарную длину проводников за счет внутреннего кручения, а так же не позволяет добиться идентичности магнитного поля во все проводниках жгута, а это, пусть и не большие, но все же потери на тепло.
Изготовление ленты более трудоемко и немного дороже обходится, поскольку необходимое количество проводников растягивается и затем, при помощи полиуританового клея (ТОП-ТОП, СПЕЦИАЛИСТ, МОМЕНТ-КРИСТАЛЛ) склеивается в ленту. Клей наносят на провод небольшими порциями - по 15…20 см длинны проводника и затем зажав жгут между пальцами как бы втирают его следя за тем, чтобы провода уложились в ленту, на подобии ленточных жгутов, используемых для соединения дисковых носителей с материнской платой IBM компьютеров. После того как клей прихватился наносится новая порция на 15…20 см длины проводов и снова разглаживается пальцами до получения ленты. И так по всей длине проводника (рисунок 16).


Рисунок 16

После полного высыхания клея производят намотку ленты на сердечник, причем первой наматывается обмотка с большим количеством витков (как правило и меньшим сечением), а сверху уже более сильноточные обмотки. После намотки первого слоя необходимо ленту "уложить" внутри кольца воспользовавшись выструганным из дерева конусообразным колышком. Максимальный диаметр колышка равен внутреннему диаметру используемого кольца, а минимальный - 8…10 мм. Длина конуса должна быть не меньше 20 см и измение диаметра должно быть равномерным. После намотки первого слоя кольцо просто одевают на колышек и с усилием надавливают таким образом, чтобы кольцо довольно сильно заклинило на колышке. Затем кольцо снимают, переворачивают и снова одевают на колышек с тем же усилием. Колышек должен быть достаточно мягким, чтоб не повредить изоляцию обмоточного провода, поэтому твердые породы дерева для этих целей не подойдут. Таким образом проводники укладывают строго по форме внутреннего диаметра сердечника. После намотки следующего слоя провод снова "укладывают" при помощи колышка и так делают после намотки каждого следующего слоя.
После намотки всех обмоток (не забывая использовать межобмоточную изоляцию) трансформатор желательно прогреть до 80…90°С в течении 30-40 мин (можно воспользоваться духовкой газовой или электрической печки на кухне, но не следует перегревать). При этой температуре полиуритановый клей делается эластичным и снова приобретает клеящие свойства склеивая между собой уже не только проводники расположенные параллельно самой ленте, но и находящиеся сверху, т.е. происходит склеивание слоев обмоток между собой, что добавляет механической жесткости обмоткам и исключает какие либо звуковые эффекты, появление которых иногда случается при плохой стяжке проводников силового трансформатора (рисунок 17).


Рисунок 17

Плюсами такой намотки является получения идентичного магнитного поля во все проводах ленточного жгута, поскольку геометрически они располагаются одинаково по отношению к магнитному полю. Такой ленточный проводник гораздо легче равномерно распределять по всему периметру сердечника, что очень актуально даже для типовых трансформаторов, а для импульсных является ОБЯЗАТЕЛЬНЫМ условием. Используя ленту можно добиться довольно плотной намотки, причем увеличив доступ охлаждающего воздуха к виткам, расположенным непосредственно внутри обмотки. Для этого достаточно количество необходимых проводов разделить на два и сделать две одинаковых ленты, которые будут наматываться друг на друга. Таким образом увеличится толщина намотки, но появится большое расстояние между витками ленты, обеспечивая доступ воздуха внутрь трансформатора.
В качестве межслойной изоляции лучше всего использовать фторопластовую пленку - очень эластична, что компенсирует напряженность одного края, возникающего при намотке на кольцо, имеет довольно большое пробивное напряжение, не чувствительна к температурам до 200°С и очень тонкая, т.е. не будет занимать много места в окне сердечника. Но она не всегда имеется под рукой. Использовать виниловую изоленту можно, но она чувствительна к температурам выше 80°С. Изолента на основе материи к температурам устойчива, но имеет маленькое пробивное напряжение, поэтому при ее использовании необходимо наматывать минимум 2 слоя.
Каким бы проводником и в какой бы последовательности Вы не наматывали дроссели и силовой трансформатор следует помнить о длине выводов
Если Дроссели и силовой трансформатор изготавливаются с использованием ферритовых колец, то не надо забывать, что перед намоткой края ферритового кольца следует скруглить, поскольку они достаточно остры, а феррит материал довольно прочный и может повредить изоляцию на обмоточном проводе. После обработки феррит обматывается фторопластовой лентой или матерчатой изолентой и наматывается первая обмотка.
Для полной идентичности одинаковых обмоток обмотки мотаются сразу в два провода (подразумевается сразу в два жгута) которые после намотки прозваниваются и начало одной обмотки соединяется с концом другой.
После намотки трансформатора необходимо удалить лаковую изоляцию на проводах. Это самый не приятный момент, поскольку ОЧЕНЬ трудоемкий.
Прежде всего необходимо зафиксировать вывода на самом трансформаторе и исключить вытягивание отдельных проводов их жгута при механических воздействиях. Если жгут ленточный, т.е. клееный и после намотки прогретый, то достаточно намотать на отводы несколько витков тем же обмоточным проводом непосредственно возле тела трансформатора. Если же используется витой жгут, то его необходимо дополнительно свить у снования вывода и так же зафиксировать, намотав несколько витков провода. Далее вывода либо обжигаются при помощи газовой горелки сразу все, либо зачищаются по одному при помощи канцелярского резака. Если лак отжигался, то после остывания провода защищаются наждачной бумагой и свиваются.
После удаления лака, зачистки и свивки вывода необходимо защитить от окисления, т.е. покрыть канифольным флюсом. Затем трансформатор устанавливают на плату, все вывода, кроме вывода первичной обмотки подключаемого к силовым транзисторам, вставляются в соответствующие отверстия, на всякий случай следует "прозвонить" обмотки. Особое внимание следует обратить на фазировку обмоток, т.е. на соответствие начала обмотки с принципиальной схемой. После того как вывода трансформатора вставлены в отверстия следует их укоротить так, чтобы от конца вывода до печатной платы было 3…4 мм. Затем свитый вывод "раскручивается" и в место пайки помещается АКТИВНЫЙ флюс, т.е. это либо гашенная соляная кислота, на кончик спички берется капелька и переносится в место пайки. Либо в глицерин добавляется ацетил-салициловая кислота кристаллическая (аспирин) до получения кашеобразной консистенции (и то и другое можно приобрести в аптеке, в рецептурном отделе). После этого вывод припаивается к печатной плате, тщательно прогревая и добиваясь равномерного расположения припоя вокруг ВСЕХ проводников отвода. Затем вывод укорачивается по высоте пайки и плата тщательно моется либо спиртом (90% минимум), либо очищенным бензином, либо смесью бензина с растворителем 647 (1:1).

ПЕРВОЕ ВКЛЮЧЕНИЕ
Включение, проверка работоспособности производится в несколько этапов позволяющих избежать неприятностей, которые однозначно возникнут при ошибке в монтаже.
1 . Для проверки данной конструкции потребуется отдельный источник питания с двуполярных напряжением ±15...20 В и мощность 15...20 Вт. Первое включение производят подключив МИНУСОВОЙ ВЫВОД дополнительного источника питания к минусовой первичной шине питания преобразователя, а ОБЩИЙ подключают в плюсовому выводу конденсатора С1 (рисунок 18). Таким образом симмулируется питани модуля управления и он проверяется на работоспосбность без силовой части. Тут желательно использовать осцилограф и частотомер, но если их нет, то можно обойтись и мультиметром, желательно стрелочны (цифровые не адекватно реагируют на пульсирующие напряжения).


Рисунок 18

На выводах 9 и 10 контроллера TL494 стрелочный прибор, включенный на измерение постоянного напряжения должен показать почти половину напряжения питания, что говорит о том, что на микросхеме имеются прямоугольные импульсы
Так же должно сработать реле К1
2 . Если модуль работает нормально, то следует проверить силовую часть, но опять же не от высокого напряжения, а используя доп источник питания (рисунок 19).


Рисунок 19

При такой последовательности проверки что либо сжечь весьма затруднительно даже при серьезных ошибках монтажа (замыкание между дорожками платы, не пропайка элементов) поскольку мощности дополнительного блока не хватит. После включения проверяется наличие выходных напряжения преобразователя - конечно же оно будет значительно ниже расчетного (при использовании доп источника ±15В выходные напряжения будут занижены примерно в 10 раз, поскольку первичное питание составляет не 310 В а 30 В), тем не менее наличие выходных напряжений говорит о том, что в силовой части нет ошибок и можно переходить к терьей части проврки.
3 . Первое включение от сети необходимо производить с токоограничением в качестве которого может выступить обычная лампа накаливания на 40-60 Вт, которую подключают вместо предохранителя. Радиаторы уже должны быть установлены. Таким образом в случае чрезмерного потребления по какой либо причине лампа загорится, а вероятность выхода из строя сведется к минимуму. Если же все нормально, то производят регулировку выходного напряжения резисторовм R26 и проверяют нагрузочную способность источника подключив к выходу такую же лампу накаливания. Включенная вместо предохранителя лампа должна загоряется (яркость зависит от выходного напряжения, т.е. от того какую мощность источник будет отдавать. Выходное напряжение регулируется резистором R26, однако может потебоваться подбор R36.
4 . Проверка работоспособности производится с установленным на место предохранителем. В качестве нагрузки можно использовать нихромовую спираль для электропечек мощность 2-3 кВт. Два отрезка провода подпаивают к выходу источника питания, для начала к плечу, с котрого производится контроль выходного напряжения. Один провод прикручивается к концу спирали, на второй устанавливается "крокодил". Теперь, переустанавливая "крокодил" по длине спирали, можно оперативно менять сопротивление нагрузки (рисунок 20).


Рисунок 20

Будет не лишним на спирали сделать "растяжки" в местах с определенным сопротивлением, например каждые 5 Ом. Подключаясь к "растяжкам" Уже заранее будет известно какая нагрузка и какая выходная мощность на данный момент. Ну а мощность можно вычислить по закону Ома (используется в табличке).
Все это необходимо для регулировки порога срабатывания защиты от перегрузки, которая должна устойчиво срабатывать при превышении реальной мощности на 10-15% расчетную. Так же проверяется как устойчиво источник питания держит нагрузку.

Если источник питания не отдает расчетную мощность значит какая то ошибка закралась при изготовлении трансформатора - смотрим выше как расчитать витки под реальный сердечник.
Осталось внимательно изучить как изготовить печатную плату, а это И можно приступать к сборке. Необходимые чертежи печатной платы с первоисточником в формате LAY лежат в

Первая
цифра

Вторая
цифра

Третья
цифра

Множе-
тель

Допуск
+/- %

Серебристый

-

-

-

10^-2

10

Золотистый

-

-

-

10^-1

5

Черный

-

0

-

1

-

Коричневый

1

1

1

10

1

Красный

2

2

2

10^2

2

Оранжевый

3

3

3

10^3

-

Желтый

4

4

4

10^4

-

Зеленый

5

5

5

10^5

0,5

Голубой

6

6

6

10^6

0,25

Фиолетовый

7

7

7

10^7

0,1

Серый

8

8

8

10^8

Отличия импульсного блока питания от обычного между трансформаторным и импульсными, а также их достоинства и недостатки. Например трансформаторный блок питания, в составе которого имеется трансформатор выполняющий функцию понижения сетевого напряжения до заданного, такая конструкция называется понижающим трансформатором.

Блоки питания работающие в импульсном режиме являются импульсным преобразователем или инвертором. В импульсных источниках питания переменное напряжение на входе вначале выпрямляется, а затем происходит формирование импульсов необходимой частоты. У такого ИП в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования. p>

Трансформаторные блоки питания

Самым распространенным блоком питания считается конструкция, в составе которого имеется понижающий трансформатор, его определенная обязанность — понижать входное напряжение. Его первичная обмотка намотана с учетом работы с сетевым напряжением. Кроме понижающего трансформатора в таком БП установлен еще выпрямитель собранный на диодах, как правило применяется две пары выпрямительных диодов (диодный мост) и конденсаторах фильтра. Такое устройство служит для преобразования однонаправленного пульсирующего переменного напряжение в постоянное. Не редко применяются и другие конструктивно выполненные устройства, например, выполняющий в выпрямителях функцию удвоения напряжения. Кроме сглаживающих пульсации фильтров, там же могут быть элементы фильтра помех высокой частоты и всплесков, схема защиты от короткого замыкания, полупроводниковые приборы для стабилизации напряжения и тока.

Принципиальная схема простейшего однотактного импульсного БП

Достоинства импульсных блоков питания

● Если сравнивать относительно выходной мощности линейный стабилизатор и импульсный, то последний имеет некоторые достоинства:
● Относительно небольшой вес, получившийся в следствии того, что с увеличением частоты можно применять трансформаторы малых габаритов имея аналогичную выдаваемую выходную мощность.
● Большой вес линейного стабилизатора получается за счет использования массивных силовых трансформаторов, а также тяжелых теплоотводов силовых компонентов.
● Высокий КПД, который составляет около 98% полученный в следствии того, что штатные потери происходящие в импульсных стабилизирующих устройствах зависят от переходных процессов на стадии переключения ключа.
● Поскольку больший отрезок времени ключи находятся в стабильном либо включенном или выключенном состоянии, то соответственно и энергетические потери ничтожны;
● Относительно небольшая стоимость, образовавшаяся в следствии выпуска большого количества необходимых электронных элементов, в частности появление на рынке электронных товаров высокомощных транзисторных ключей. ● Помимо всего этого необходимо заметить существенно малую стоимость импульсных трансформаторов при аналогичной отдаваемой в нагрузку мощности.
● Имеющиеся в подавляющем большинстве блоках питания установленных схем защиты от всевозможных нештатных ситуаций, таких как защита от короткого замыкания или если не подключена нагрузка на выходе устройства.

В статье речь об импульсных блоках питания (далее ИБП), которые сегодня получили самое широкое применение во всех современных радиоэлектронных устройствах и самоделках.
Основной принцип заложенный в основу работы ИБП заключается в преобразовании сетевого переменного напряжения (50 Герц) в переменное высокочастотное напряжение прямоугольной формы, которое трансформируется до требуемых значений, выпрямляется и фильтруется.
Преобразование осуществляется с помощью мощных транзисторов, работающих в режиме ключа и импульсного трансформатора, вместе образующих схему ВЧ преобразователя. Что касается схемного решения, то здесь возможны два варианта преобразователей: первый - выполняется по схеме импульсного автогенератора и второй - с внешним управлением (используется в большинстве современных радиоэлектронных устройств).
Поскольку частота преобразователя обычно выбирается в среднем от 20 до 50 килогерц, то размеры импульсного трансформатора, а, следовательно, и всего блока питания достаточно минимизируются, что является очень важным фактором для современной аппаратуры.
Упрощенная схема импульсного преобразователя с внешним управлением смотрите ниже:

Преобразователь выполнен на транзисторе VT1 и трансформаторе Т1. Сетевое напряжение через сетевой фильтр (СФ) подается на сетевой выпрямитель (СВ), где оно выпрямляется, фильтруется конденсатором фильтра Сф и через обмотку W1 трансформатора Т1 подается на коллектор транзистора VT1. При подаче в цепь базы транзистора прямоугольного импульса, транзистор открывается и через него протекает нарастающий ток Iк. Этот же ток будет протекать и через обмотку W1 трансформатора Т1, что приведет к тому, что в сердечнике трансформатора увеличивается магнитный поток, при этом во вторичной обмотке W2 трансформатора наводится ЭДС самоиндукции. В конечном итоге на выходе диода VD появиться положительное напряжение. При этом если мы будем увеличивать длительность импульса приложенного к базе транзистора VT1, во вторичной цепи будет увеличиваться напряжение, т.к энергии будет отдаваться больше, а если уменьшать длительность, соответственно напряжение будет уменьшаться. Таким образом, изменяя длительность импульса в цепи базы транзистора, мы можем изменять выходные напряжения вторичной обмотки Т1, а следовательно осуществлять стабилизацию выходных напряжений БП.
Единственное что для этого необходимо - схема, которая будет формировать импульсы запуска и управлять их длительность (широтой). В качестве такой схемы используется ШИМ контроллер. ШИМ - это широтно-импульсная модуляция. В состав ШИМ контроллера входит задающий генератор импульсов (определяющий частоту работы преобразователя), схемы защиты, контроля и логическая схема, которая и управляет длительностью импульса.
Для стабилизации выходных напряжений ИБП, схема ШИМ контроллера «должна знать» величину выходных напряжений. Для этих целей используется цепь слежения (или цепь обратной связи), выполненная на оптопаре U1 и резисторе R2. Увеличение напряжения во вторичной цепи трансформатора T1 приведет к увеличению интенсивности излучения светодиода, а следовательно уменьшению сопротивления перехода фототранзистора (входящих в состав оптопары U1). Что в свою очередь, приведет к увеличению падения напряжения на резисторе R2, который включен последовательно фототранзистору и уменьшению напряжения на выводе 1 ШИМ контроллера. Уменьшение напряжения заставляет логическую схему, входящую в состав ШИМ контроллера, увеличивать длительность импульса до тех пор, пока напряжение на 1-м выводе не будет соответствовать заданным параметрам. При уменьшении напряжения - процесс обратный.
В ИБП используются 2 принципа реализации цепей слежения - «непосредственный» и «косвенный». Выше описанный способ называется «непосредственный», так как напряжение обратной связи снимается непосредственно с вторичного выпрямителя. При «косвенном» слежении напряжение обратной связи снимается с дополнительной обмотки импульсного трансформатора:

Уменьшение или увеличение напряжения на обмотке W2, приведет к изменению напряжения и на обмотке W3, которое через резистор R2 также приложено к выводу 1 ШИМ контроллера.
С цепью слежения я думаю, разобрались, теперь давайте рассмотрим такую ситуацию как короткое замыкание (КЗ) в нагрузке ИБП. В этом случае вся энергия, отдаваемая во вторичную цепь ИБП, будет теряться и напряжение на выходе будет практически равно нулю. Соответственно схема ШИМ контроллера будет пытаться увеличить длительность импульса для того, что бы поднять уровень этого напряжения до соответствующего значения. В итоге транзистор VT1 будет все дольше и дольше находиться в открытом состоянии, и через него будет увеличиваться протекающий ток. В конце концов, это приведет к выходу из строя этого транзистора. В ИБП предусмотрена защита транзистора преобразователя от перегрузок по току в таких нештатных ситуациях. Основу ее составляет резистор Rзащ, включенный последовательно в цепь, по которой протекает ток коллектора Iк. Увеличение тока Iк протекающего через транзистор VT1, приведет к увеличению падения напряжения на этом резисторе, а, следовательно, напряжение, подаваемое на вывод 2 ШИМ контроллера также будет уменьшаться. Когда это напряжение снизится до определенного уровня, который соответствует максимально допустимому току транзистора, логическая схема ШИМ контроллера прекратит формирование импульсов на выводе 3 и блок питания перейдет в режим защиты или другими словами отключится.
В заключении темы хотелось бы более подробно описать преимущества ИБП. Как уже упоминалось, частота импульсного преобразователя достаточно высока, в связи с чем, габаритные размеры импульсного трансформатора уменьшены, а значит, как это не парадоксально звучит, стоимость ИБП меньше традиционного БП, так как меньше расход металла на магнитопровод и меди на обмотки, даже не смотря на то, что количество деталей в ИБП увеличивается. Еще одним из достоинств ИБП является малая, по сравнению с обычным БП, емкость конденсатора фильтра вторичного выпрямителя. Уменьшение емкости стало возможным за счет увеличения частоты. И, наконец, КПД импульсного блока питания доходит до 85 %. Связано это с тем, что ИБП потребляет энергию электрической сети только во время открытого транзистора преобразователя, при его закрытии энергия в нагрузку отдается за счет разряда конденсатора фильтра вторичной цепи.
К минусам можно отнести усложнение схемы ИБП и увеличение импульсных помех излучаемым самим ИБП. Увеличение помех связано с тем, что транзистор преобразователя работает в ключевом режиме. В таком режиме транзистор является источником импульсных помех, возникающих в моменты переходных процессов транзистора. Это является недостатком любого транзистора работающего в ключевом режиме. Но если транзистор работает с малыми напряжениями (например, транзисторная логика с напряжением в 5 вольт) это не страшно, в нашем же случае напряжение, приложенное к коллектору транзистора, составляет, примерно 315 вольт. Для борьбы с этими помехами в ИБП используются более сложные схемы сетевых фильтров, чем в обычном БП.

 

Возможно, будет полезно почитать: