Классификация стекол по назначению общие характеристики. Стекло неорганическое. Далее подробнее остановимся на имеющейся на данный момент классификации стекол

Электровакуумные стекла . Определяющим параметром стекол для изготовления из них баллонов, ножек и других деталей электровакуумных приборов является температурный коэффициент линейного расширения. Он имеет очень важное значение при пайке и сварке различных стекол, при впайке металлической проволоки или ленты в стекло. Значения α l стекла и соединяемых с ним материалов должны быть приблизительно одинаковыми, так как иначе при изменении температуры может произойти растрескивание стекла, а также нарушение герметичности в месте ввода металлической проволоки в стекло. Кроме того, для высокочастотных приборов используют стекла с низкими диэлектрическими потерями. Электровакуумные стекла подразделяют и маркируют по численным значениям температурного коэффициента линейного расширения. Так как стекла – это материалы с маленьким значением температурного коэффициента линейного расширения, а у металлов наблюдается закономерная связь температуры плавления со значением температурного коэффициента линейного расширения, то в стекла удается впаивать только тугоплавкие металлы или металлические сплавы, у которых α l такой же, как у тугоплавких металлов.

Поэтому электровакуумные стекла подразделяют на:

По химическому составу электровакуумные стекла относятся к группе боросиликатных (В2О3 + SiO2) или алюмосиликатных (Аl2О3 + SiO2) материалов с добавками щелочных окислов. Названия «платиновое», «молибденовое», «вольфрамовое» определяются не составом стекла, а только тем, что значения αl этих стекол близки к αl , платины, молибдена, вольфрама. Температурный коэффициент линейного расширения возрастает при увеличении содержания щелочных окислов. В обозначении марки электровакуумного стекла после буквы С указывают значение αl и серия разработки. Например, марка С89-5 характеризует стекло с αl = 89 · 10–7 К–1 серии 5.

Изоляторные стекла . Стекла легко металлизируются и используются в качестве герметизированных вводов в металлические корпусы различных приборов (конденсаторов, диодов, транзисторов и др.). Другим элементом изоляции, часто встречающимся в дискретных полупроводниковых приборах, является стеклянная буса, изолирующая металлические выводы прибора от фланца корпуса, на котором располагается полупроводниковый кристалл с p -n -переходами. Стеклянные бусы изготавливают из капилляров, нарезанных в виде трубок и колец определенных размеров. Обычно в качестве материала таких проходных изоляторов используют щелочное силикатное стекло.

Цветные стекла . Обычные силикатные стекла прозрачны для излучения в видимой части спектра. Некоторые добавки придают стеклам соответствующую окраску: СаО – синюю, Сr2О3 – зеленую, МnО2 – фиолетовую и коричневую, UO3 – желтую и т.д., что используется при изготовлении цветных стекол, светофильтров, эмалей и глазурей.

Лазерные стекла . Стекло может быть использовано в качестве рабочего тела в твердотельных лазерах. Генерирующими центрами являются активные ионы, равномерно распределенные в диэлектрической прозрачной матрице. Как правило, в стеклах отсутствуют ограничения в растворимости активирующих добавок. На практике наиболее часто применяют баритовый крон (ВаО – К2О – SiO2), активированный ионами неодима Nd3+.

Основные преимущества стекол, используемых в лазерах, перед монокристаллами заключаются в их высокой технологичности, оптической однородности, изотропности свойств. Из стекла сравнительно легко изготовить однородные стержни большого размера, что необходимо для достижения высокой выходной мощности лазерного излучения. Однако отсутствие дальнего порядка вызывает уширение линий люминесценции активированного стекла. Следствием этого является снижение степени монохроматичности выходного излучения и увеличение пороговой мощности оптической накачки. К тому же стекла, по сравнению с монокристаллами, обладают невысокой теплопроводностью, что создает дополнительные трудности для осуществления непрерывного режима генерации. Поэтому лазеры на стекле лучше подходят для генерации импульсов с высокой энергией излучения.

Стекловолокно . Из расплавленной стекломассы методом вытяжки через фильеру с последующей быстрой намоткой на вращающийся барабан можно получать тонкие волокна, обладающие хорошей гибкостью и повышенной механической прочностью. Большая гибкость и прочность стекловолокна объясняются ориентацией частиц поверхностного слоя стекла, имеющей место при вытягивании стекловолокна из расплавленной стекломассы и его быстром охлаждении. Весьма тонкие стеклянные волокна (диаметром 4–7 мкм) имеют настолько высокую гибкость, что могут обрабатываться способами текстильной технологии. Из стеклянных нитей, скрученных из отдельных волокон, ткут стеклянные ткани, ленты и шланги. Преимуществами стеклянной волокнистой изоляции перед изоляцией из органических волокон являются высокая нагрево-стойкость, значительная механическая прочность, относительно малая гигроскопичность и хорошие электроизоляционные свойства. Для производства стекловолокна используют щелочные алюмосиликатные, бесщелочные и малощелочные алюмоборосиликатные стекла.

Световоды . Тонкие стеклянные волокна используют для передачи света между источником и приемником излучения. Отдельные волокна могут быть соединены в световые кабели (жгуты) с внутренними межволоконными светоизолирующими покрытиями. Совокупность методов и средств передачи световой информации с помощью тончайших волокон получила название волоконной оптики, которая является важной составной частью оптоэлектроники.

Волоконные устройства имеют ряд преимуществ перед линзовыми. Они отличаются компактностью и надежностью. С их помощью можно осуществить поэлементную передачу изображения с достаточно высокой разрешающей способностью, причем передача изображения возможна по искривленному пути. Существенным моментом является скрытность передачи информации и высокая помехозащищенность оптического канала связи, в котором сами волокна играют роль световодов, т.е. служат направляющими системами – канализируют свет от источника к приемнику информации. Направляющее действие волокон достигается за счет эффекта многократного полного внутреннего отражения (рис. 6).

Рис. 6. Пояснение к принципу действия световода

Для передачи изображения используют волокна диаметром 5–15 мкм. Чтобы предотвратить просачивание света из одного волокна в другое, их снабжают светоизолируюшей оболочкой, которую изготавливают из стекла с меньшим показателем преломления, нежели у сердцевины. Тогда световой луч L, падая из среды, оптически более плотной (п 1– больший), на поверхность раздела со средой, оптически менее плотной (n 2 – меньший), под углом, большим предельного, будет испытывать полное внутреннее отражение и, многократно отражаясь, пойдет вдоль волокна, как это показано на отрезке отдельного волокна (рис. 6). Изображение целого объекта, например буквы К на странице книги, может быть передано по пучку согнутых волокон, если передающий конец световода 1 поставить на освещаемый по световоду объект; на приемном конце световода 2 изображение будет мозаичным, как это показано в верхней части рис. 6. Световой кабель диаметром 5–6 мм содержит несколько сотен тысяч светоизолированных волокон. Для правильной передачи изображения требуется регулярная укладка волокон в жгуте, т.е. относительное расположение волокон на его входном и выходном торцах должно быть одинаковым.

С помощью волоконных жгутов легко осуществить преобразование оптического изображения, его кодирование и дешифровку. Световые кабели из волокон с коническим сечением могут усиливать освещенность объектов за счет концентрации светового потока, уменьшать или увеличивать изображение.

Специальные технологические приемы (осаждение пленок на подложку, ионное легирование, ионный обмен) позволяют изготовить плоские световоды, которые являются основой оптических интегральных схем.

Стеклянные товары.

Стекло – однородное аморфное тело, которое получается при охлаждении стекломассы. Простой пример – берем кубик сахара, нагреваем его до жидкого состояния, а затем охлаждаем. Сахар теряет свою первоначальную кристаллическую структуру и становится аморфным веществом.

История стекла.

Впервые стекло возникло в Древнем Египте за 3 ... 4 тысячелетия до нашей эры. Однако стекла той эпохи даже по внешнему виду отличались от теперешних. Они были, как правило, малопрозрачны, содержали большое количество пузырей. Изготовляли из такого стекла главным образом украшения.

В конце VII в. производство стекла возникает в Венеции где к IX в. оно достигает высокого уровня. Известные венецианские стеклянные витражи и мозаики украшали церкви того периода, а различные художественные изделия из цветного стекла, мозаичное и филигранное стекло, зеркала являлись монополией венецианского стеклоделия. Затем это искусство проникло в другие страны Западной Европы и Ближнего Востока.

В конце XVII в. в Чехии было изобретено стекло, отличающееся чистотой, прозрачностью и твердостью и известное под названием "богемский хрусталь".

Стеклоделие в России возникло в IX - Х вв., т. е. намного раньше, чем в
Америке (XVII в.) и ранее, чем во многих других странах Западной Европы.

Первый стекольный завод в России был основан в 1638 г. под Москвой. На этом заводе изготовляли оконное стекло и другие стеклянные изделия. Большое развитие стеклоделие получило при Петре I. В этот период создаются стекольные заводы под Москвой, в Киеве и других городах. К 1760 г. в России уже насчитывалось более 25 стекольных заводов, расположенных в различных губерниях. Заводы эти вырабатывали главным образом оконное стекло, бутылки и хозяйственную посуду.

Основоположником научных основ стеклоделия в России является М.В. Ломоносов, который в 1752 г. построил под Петербургом фабрику и организовал на ней изготовление цветных стекол. М.В. Ломоносовым разработан метод горячей прессовки стекла.

Состав стекла.

Сырьевые материалы для производства стекла подразделяются на основные или стеклообразующие и вспомогательные.

С помощью основных материалов в состав стекла вводятся различные оксиды, которые при сплавлении образуют стекломассу. Свойства стекла зависят от входящих в него оксидов и их соотношения. Главный оксид - SiO2 - вводят в стекло через кварцевый песок. Песок должен быть свободен от примесей, особенно окрашивающих (оксиды железа, титана, хрома), которые вызывают голубоватые, желтоватые, зеленоватые оттенки стекла, снижают его прозрачность. С повышением содержания диоксида кремния в стекле улучшаются механическая и термическая прочность, химическая устойчивость, но повышается температура варки.

Оксид бора В2О3 облегчает варку, улучшает физико-химические свойства стекла.

Оксид алюминия А12О3 способствует повышению прочностных показателей и химической устойчивости стекла.

Щелочные оксиды Nа2О, К2О понижают температуру варки стекла, облегчают формование изделий, однако уменьшают прочность, термостойкость и химическую устойчивость.

Оксиды кальция, магния, цинка увеличивают химическую устойчивость и термостойкость изделий. Оксиды бария, свинца и цинка повышают плотность, улучшают оптические свойства и поэтому применяются в производстве хрусталя.

Вспомогательные материалы вводят для улучшения потребительских свойств стекла. По назначению их подразделяют на осветлители, обесцвечиватели, глушители, красители, восстановители и окислители.

Осветлители способствуют удалению из стекломассы газов, образующихся при разложении сырьевых материалов. Из-за газовых включений масса стекла становится непрозрачной. В качестве осветлителей применяют селитру, аммонийные соли, триоксид мышьяка. При нагревании осветлители разлагаются, в виде паров поднимаются вверх и увлекают за собой газообразные включения.

Обесцвечиватели погашают или ослабляют нежелательные цветные оттенки. Из-за небольших примесей оксидов железа стекло имеет зеленовато-голубоватый оттенок и, чтобы сделать этот оттенок незаметным применяются обесцвечиватели. Применяют 2 метода обесцвечивания-физический и химический. При физическом методе в состав стекломассы вводят дополнительный краситель, который нейтрализует действие основного. К физическим обесцвечивателям относятся соединения марганца, кобальта и др. Химические обесцвечиватели переводят окрашенные соединения в неокрашенные. К ним относится селитра, сурьма. Данные соединения переводят оксид 2-х валентного железа в оксид 3-х валентного железа, который имеет более слабую окраску.

Глушители (фториды и фосфаты) уменьшают прозрачность и обусловливают белую окраску стекла.

Красители придают стеклу нужный цвет. В качестве красителей используют оксиды или сульфиды тяжелых металлов. Окрашивание может происходить также за счет выделения в стекле коллоидных частиц свободных металлов (меди, золота, сурьмы).

В синий цвет стекло окрашивают закисью кобальта, в голубой - окисью меди, в зеленый - окисью хрома или ванадия, в фиолетовый - перекисью марганца, а в розовый - селеном и т.д.

Окислители и восстановители добавляют при варке цветных стекол для создания определенной pH среды. К ним относится селитра, углерод и т.д.

Ускорители варки способствуют ускорению варки стекла. К ним относятся фтористые соединения, алюминиевые соли и др.

Свойства стекла. Зависят от его состава.

Плотность обычного стекла 2500 кг/м3, наибольшую плотность имеют стекла с повышенным содержанием окиси свинца - до 6000 кг/м3. Зависит она в основном от наличия в составе стекла оксидов тяжелых металлов (свинца, бария, цинка) и влияет на массу изделий, оптические и термические свойства. С увеличением плотности возрастает показатель преломления света, блеск и игра света в гранях, однако термостойкость, прочность и твердость снижаются.

Оптические свойства стекла разнообразны. Стекла могут быть прозрачными (коэффициент пропускания 0,85 и более) и в разной степени заглушенными, бесцветными и окрашенными, с поверхностью блестящей и матовой. Основными оптическими свойствами стекла является: светопропускание (прозрачность), светопреломление, отражение, рассеивание и др. Обычные силикатные стекла хорошо пропускают всю видимую часть спектра и практически не пропускают ультрафиолетовые и инфракрасные лучи. Прозрачность большинства стекол составляет 84-90%. Изменяя химический состав стекла и его окраску, можно регулировать светопропускание стекла. Показатель преломления (отношение синуса угла падения к синусу угла отражения) для обычных стекол составляет 1,5, для хрусталя 1,9. В тоже время чем выше показатель преломления, тем выше коэффициент отражения.

Стекло обладает высокой прочностью на сжатие 700-1000 МПа и малой прочностью при растяжении - 35-85 МПа.

Твердость-это способность стекла сопротивляться проникновению в него другого тела. Зависит от состава. Кварцевые стекла, а также боросиликатные малощелочные стекла обладают большой твердостью. Хрустальные стекла в 2 раза мягче обыкновенных. Твердость обычных силикатных стекол 5-7 по шкале Мооса.
Хрупкость-способность стекла сопротивляться удару. Стекло плохо сопротивляется удару, т. е. оно хрупко. Присутствие в стекле борного ангидрида, окиси магния увеличивает сопротивление стекла удару.
Теплопроводность стекла невелика, поэтому стекло используют для защиты помещений зимой. Наибольшую теплопроводность имеет кварцевое стекло.

Термическая устойчивость стекол зависит от многих факторов: состава стекла, формы и размера изделия, характера поверхности и т.д. С помощью специальной термической обработки термическая стойкость стекла может быть увеличена в несколько раз.

Электропроводность стекла небольшая (стекло является диэлектриком). В тоже время электропроводность стекол изменяется с изменением температуры (расплавленное стекло проводит ток). Наибольшее влияние на электропроводность оказывает содержание в них окиси лития; чем больше ее в составе стекла, тем выше электропроводность. Понижают электропроводность окислы двухвалентных металлов (больше всего ВаО).
Стекло поддается механической обработке: его можно пилить циркулярными пилами с алмазной набивкой, обтачивать победитовыми резцами, резать алмазом, шлифовать, полировать. В пластичном состоянии, при температуре 800-1000°С, стекло поддается формованию.

Классификация стекол.

Стекла классифицируют в зависимости от состава. Название их зависит от содержания тех или иных оксидов. Различают следующие оксидные стекла:

силикатные – SiO 2 ;

алюмосиликатные - Аl 2 O 3 , SiO 2 ;

боросиликатные - В 2 O 3 , SiO 2 ;

бороалюмосиликатные - В 2 O 3 , Аl 2 O 3 , SiO 2 и другие.

Каждый вид стекла обладает определенными свойствами.

Силикатные стекла подразделяют на обыкновенные, хрустальные, жаростойкие. К обыкновенным относят известково-натриевые, известково-калиевые, известково-натриево-калиевые стекла.

Хрустальные стекла характеризуются повышенным блеском и сильным лучепреломлением. Различают хрусталь свинцовый и бессвинцовый. Свинцовый хрусталь имеет повышенную массу, хорошо декорируется. В зависимости от количества оксида свинца свинцовый хрусталь делят на

1. Хрустальное стекло, содержащее оксид свинца, бора или цинка в количестве не менее 10%.

2. Малосвинцовый хрусталь, содержащий 18-24% оксида свинца.

3. Свинцовый хрусталь, содержащий 24-30% оксида свинца.

4. Высокосвинцовый хрусталь, содержащий 30% и более оксида свинца.

Бессвинцовый хрусталь содержит в основном оксид бария (не менее 18%), что улучшает лучепреломление, повышает твердость и блеск стекла, но уменьшает прозрачность.

Жаростойкие стекла выдерживают резкие перепады температур. В их состав входят соединения бора (12-13%). Термическая стойкость такого стекла возрастает после закалки.
Химические свойства стекла.

Химическая устойчивость стекла определяет назначение и надежность изделий. Она весьма высока особенно по отношению к воде, органическим и минеральным кислотам (кроме плавиковой). Щелочи и карбонаты щелочей действуют более агрессивно. Плавиковая кислота растворяет стекло и поэтому используется для нанесения на стекло узоров, матирования и химической полировки изделий.

Формирование потребительских свойств стеклянных товаров происходит в процессе их производства.

Производство стеклянных товаров состоит из ряда стадий: подготовки сырья, составлению шихты, варки стекломассы, выработки стеклянных изделий, обработки и украшению изделий, сортировки, маркировки и упаковки изделий.

1. Подготовка сырья сводится к очистке кварцевого песка и других компонентов от нежелательных примесей, тонкому измельчению и просеиванию материалов.

2. Приготовление шихты, т. е. сухой смеси материалов, состоит в отвешивании компонентов согласно рецептуре и тщательном их перемешивании до полной однородности. Более прогрессивным методом является изготовление из шихты брикетов и гранул; при этом сохраняется однородность шихты, ускоряется варка. Кроме того для ускорения варки стекла в шихту добавляют 25-30% стеклянного боя. Стеклобой промывают, измельчают и пропускают через магнит.

3. Варку стекломассы из шихты осуществляют в ваннах и горшковых печах при максимальной температуре 1450-1550°С. В процессе варки происходят сложные физико-химические превращения и взаимодействия сырьевых материалов. С помощью осветлителей стекломассу освобождают от газовых включений, тщательно перемешивают до достижения однородности по составу и вязкости. При нарушениях режимов обработки сырья, приготовления шихты и варки образуются дефекты стекломассы (разберем позднее).

4. Формование изделий из вязкой стекломассы осуществляют разнообразными методами. Метод формования во многом определяет конфигурацию изделий, толщину стенки, приемы декорирования, окраску и поэтому является важным ассортиментным признаком и ценообразующим фактором.

Бытовые изделия изготовляют выдуванием, прессованием, прессовыдуванием, моллированием (гнутьем), литьем и т. д.

Выдувание - древнейший способ формования изделий из стекломассы. Выдувание может быть механизированное, вакуум-выдувное, ручное в формах и гутенское (свободное).

Ручное выдувание осуществляется с помощью стеклодувной трубки. Такое выдувание может производиться в формах и без формы. Выдуванием в формах получают изделия любых конфигураций и толщины стенки с гладкой и блестящей поверхностью. Вырабатывают бесцветные, окрашенные в массе и накладные изделия (двух- и многослойные).

Выдувание без формы или свободное выдувание (в торговле - гутенская формовка) осуществляют также посредством стеклодувной трубки, но изделия формуют и окончательно отделывают в основном на воздухе. Изделия характеризуются сложностью форм, плавными переходами частей, утолщенной стенкой.

Механизированным выдуванием на автоматах изготовляют бесцветные изделия простых очертаний, в основном стаканы.

Выдувные изделия имеют самые гладкие стенки, сильный блеск, большую прозрачность, самую разнообразную форму и толщину стенок. Они декорируются почти всеми возможными способами и считаются наиболее качественными.

Прессование являются наиболее массовыми и экономичными способами получения стеклянных изделий. Изделия формуются на автоматических и полуавтоматических прессах в специальных пресс-формах, где на них сразу наносится рисунок. Их характеризует большая толщина стенок (более 3 мм), большая масса, меньшая прозрачность и термостойкость, значительная толщина дна, видны следы от формы. Посуда, изготовленная прессованием, имеет простые формы с широким верхом.

Некоторое однообразие прессованных изделий стремятся преодолеть за счет создания легкого рельефного узора на поверхности (фактурный пресс), прессования без верхнего кольца, позволяющего получить разный у каждого изделия свободно сформированный край, сочетания прессования и гнутья (пресс-моллирование).

Прессовыдувание характеризуется тем, что формование изделий проходит в две стадии - сначала их формуют в пресс-форме, а затем - в горячем виде воздухом. Изделия имеют узкую горловину, толстые неровные стенки и следы от формы. Прессовыдуванием производят банки, бутылки, графины, флаконы; Изделия, полученные таким методом, отличаются от прессованных более сложной формой, а от выдувных-толстыми стенками, следами от формы и более грубым рисунком.

Литье. Стекломассу заливают в специальную форму, где она охлаждается и принимает очертания формы. Данный метод применяют для получения художественно-декоративных изделий.

Центробежное литье осуществляется во вращающихся металлических формах под действием центробежных сил. Изделия, полученные этим способом, имеют большую массу, а изделия крупных размеров дорабатывают вручную. Примером изделий, изготовленных центробежным литьем, могут служить аквариумы.

Другие методы формования менее распространены.

При неправильном формовании возможно возникновение различных дефектов.

5.Отжиг изделий. При формовании ввиду низкой теплопроводности стекла, резкого и неравномерного охлаждения в изделиях возникают остаточные напряжения, способные вызвать их самопроизвольное разрушение. Поэтому обязателен отжиг- термическая обработка, состоящая в нагревании изделий до 530-550 °С, выдерживании при этой температуре и последующем медленном охлаждении. При отжиге остаточные напряжения ослабляются до безопасной величины и равномерно распределяются по сечению изделий. От качества отжига зависит термическая стойкость стекла.

6. Обработка и декорирование. Первичная обработка заключаются в обработке края и дна изделий, притирке пробок к горлу графинов. Декоративная обработка - это нанесение на изделия украшений разного характера. Декор определяет эстетические свойства стеклянных изделий и является одним из главных ценообразующих факторов.

Разделки классифицируют по стадии нанесения (в горячем и холодном состоянии), видам, сложности.

Украшения, наносимые в горячем состоянии:

1. Цветное стекло получают при добавлении красителей в стекломассу.

2. Изделия с нацветом изготавливают из 1 слоя стекла и покрывают его 1 или 2 слоями интенсивно окрашенного стекла.

3. Украшение выдувных изделий в горячем состоянии осуществляют путем нанесения стеклянных налепов, лент, витых и путаных нитей. Разновидность –украшение филигранью или витьем имеет вид 2 или 3-х цветных спиралевидных нитей.

4. Украшение под мрамор или малахит получают в процессе варки молочного стекла с добавкой молотого, неразмешанного цветного стекла.

5. Разделка «кракле» («под мороз», «морозное стекло») - сеть мелких поверхностных трещин, образующихся при быстром охлаждении изделия в воде. Далее полуфабрикат помещают в печь, где трещины оплавляются.

6. Используют разделку «под валик», создающую оптический эффект за счет волнообразной внутренней поверхности, образующейся при выдувании заготовки в ребристой форме.

7. Украшения цветной насыпью. Разогретую заготовку прокатывают по измельченному цветному стеклу, которое приплавляется к поверхности.

8. Радужные пленки (ирризация) на поверхности изделий могут получаться при осаждении на горячем изделии солей хлористого олова, бария и др.; эти соли, разлагаясь, образуют прозрачные, блестящие ирризирующие пленки оксидов металлов (напоминают перламутр).

9. Украшения методом свободного выдувания -изделие приобретает своеобразную и неповторимую форму.

10. Люстры- нанесение на поверхность изделия растворов металлов. Далее изделие подвергают отжигу, растворитель испаряется, а пленка металла закрепляется на поверхности.

11. Прессованные изделия украшают в основном за счет рисунка от пресс- формы.

Украшение изделий в холодном состоянии осуществляют посредством механической обработки, химической обработки (травление) и поверхностным декорированием с использованием силикатных красок, препаратов золота, люстров.

К разделкам, наносимым механическим способом, относят матовую ленту, номерную шлифовку, алмазную грань, плоскую грань, гравировку, пескоструйную обработку.

1. Матовая лента - это полоска шириной 4-5 мм. К поверхности изделия при его вращении прижимают металлическую полоску, под которую подают песок с водой. При этом песчинки царапают стекло.

2. Номерная шлифовка - матовый поверхностный (неглубокий) рисунок из круглых, овальных шлифов или насечек. Наносится с помощью наждачных кругов.

3. Алмазная грань - это рисунок из глубоких двухгранных бороздок, которые, сочетаясь между собой, образуют кусты, сетки, многоугольные камни, простые и многолучевые звезды и другие элементы. Рисунок наносят на ручных или автоматических станках с помощью абразивного круга с различным профилем края. После нарезания рисунка его полируют до полной прозрачности. Алмазная грань особенно эффектна на хрустальных изделиях, где хорошо выявляются блеск и игра света в гранях.

4. Плоская грань - это полированные плоскости различной ширины вдоль контура изделий.

5. Гравировка - поверхностный матовый или реже светлый рисунок преимущественно растительного характера без больших углублений. Получается с помощью вращающихся медных дисков или УЗ.

6. Пескоструйная обработка - матовый рисунок различной формы, образующийся при обработке стекла песком, который под давлением подают в вырезы трафарета.

Разделки, наносимые травлением , подразделяют на травление простое (гелиоширное), сложное (пантографное), глубокое (художественное). Для получения рисунка изделия покрывают слоем защитной мастики, на которой иглами машин или вручную наносят узор, обнажая стекло. Затем посуду погружают в ванну с плавиковой кислотой, которая растворяют стекло по обнаженному узору на различную глубину.

Простое, или гелиоширное, травление - это углубленный прозрачный геометрический рисунок в виде прямых, кривых, ломаных линий.

Сложное, или пантографное, травление представляет собой линейный углубленный рисунок, но более сложного, часто растительного характера.

Глубокое, или художественное, травление - это рельефный рисунок в основном растительного сюжета на 2 или 3- слойном стекле. За счет разной глубины травления цветного стекла образуется узор разной интенсивности окраски.

Поверхностное декорирование может осуществляться силикатными красками, препаратами золота. К таким украшениям относится живопись, декалькомания (представляет собой многокрасочный рисунок без мазков кисти, наносимый с помощью переводных картинок), шелкография (однокрасочный рисунок, полученный трафаретным способом при помощи шелковой сетки) нанесение лент (шириной 4-10 мм), отводок (1-3 мм), усиков (до 1 мм), фотоизображений и др. Разрабатывают новые методы украшений - плазменное напыление металлов, стеклопорошков, фотохимическое гравирование и др.

Производственный процесс завершается приемочным контролем и маркировкой изделий.

Стекло известно людям уже около 55 веков. Самые древние образцы обнаружены в Египте. В Индии, Корее, Японии найдены стеклянные изделия, возраст которых относится к 2000 году до нашей эры. Раскопки свидетельствуют, что на Руси знали секреты производства стекла более тысячи лет назад. А первое упоминание о русском стекольном заводе (он был построен под Москвой возле деревни Духанино) относится к 1634 году. Несмотря на столь древнюю историю, массовый характер производство стекла приобрело лишь в конце прошлого столетия благодаря изобретению печи Сименса-Мартина и заводскому производству соды. А уж листовое стекло - вещь и вовсе современная. Технология его изготовления была разработана в нашем веке.

Проверка на выносливость.

Механическую прочность стекла характеризует твердость. Она же определяет его сопротивление деформации, которая непременно возникнет, если попытаться "внедрить" в стекло более твердое тело (камень, например). Любопытен практический метод определения микротвердости. В поверхность стекла вдавливается алмазная пирамидка при нагрузке вдавливания от 50 до 100 граммов.

Хрупкость стекла - это его возможность сопротивляться удару. При испытании на хрупкость на образец стекла сбрасывают эталонный стальной шар либо бьют его маятником. В обоих случаях прочность определяют работой, затраченной на разрушение образцов.

Режем...

Резку стекла выполняют алмазным или твердосплавким стеклорезом. Алмазный - тот, в оправу которого вставлено зерно алмаза таким образом, чтобы оно имело два угла - тупой и острый. Острый при резке должен двигаться вперед, тогда алмаз свободно скользит по стеклу, не задерживаясь на имеющихся на стекле неровностях. Если же вести алмаз тупым углом вперед, зерно быстро выпадет или сойдет в сторону со своего места. Чтобы при резке стекла не приходилось постоянно пользоваться транспортиром, замеряя угол наклона алмаза, на оправе стеклореза делают особую метку, которая при резке всегда должна быть обращена к линейке.

Но какой бы твердый не был алмаз, и он со временем тупится. Тогда приходится обращаться за помощью к ювелиру (или часовщику), чтобы он перевернул зерно на другую грань.

Твердосплавкий стеклорез обычно бывает трехроликовым. Ролики и есть режущая часть. Каждый из них рассчитан на резку 350 погонных метров стекла. После сильного затупления ролик точат на специальном бруске с алмазной пылью или электроточиле.

Различные фигуры из стекла можно вырезать самодельным "карандашом-стеклорезом", сделанным из древесного угля. Уголь растирают в ступке в мелкий порошок и замешивают его в гуммиарабике (вязкая прозрачная жидкость, выделяемая некоторыми видами акаций; растворяется в воде, образуя клейкий раствор). Полученное густое тесто раскатывают в крупные палочки и хорошо их просушивают.

Непосредственно перед резкой край стекла надпиливают трехгранным напильником. Затем зажигают карандаш с одного конца и касаются им надпиленного края стекла. Горячим кончиком карандаша ведут в нужном направлении. По образовавшимся трещинам стекло легко лопается.

Сверлим...

Стекла, как и люди, стареют - со временем увеличивается их хрупкость. Поэтому при работе со старыми стеклами их сначала надо промыть, просушить, протереть тряпкой, чуть смоченной скипидаром, и снова просушить, защитив от пыли.

Отверстия в стекле лучше всего делать с помощью ручной дрели, так как при работе электроинструментом стекло в месте сверления сильно нагревается.

Сверла используют в основном алмазные. Центр сверления намечают "крестиком" с помощью стеклореза. Роль смазки выполняет технический скипидар, в котором разведена канифоль. Первую каплю этого раствора наносят на "крестик", а затем постепенно добавляют уже при сверлении, так чтобы углубление всегда было заполнено смазкой.

После просверливания на 0,7-0,8 толщины, когда острие почти выходит на другую сторону, стекло переворачивают. Легким ударом острия сверла вводят его в просверленный конус и продолжают работу "до победного конца" уже с другой стороны. Такая "хитрость" позволяет избежать трещин, получения неровных краев отверстия, а также уменьшить его конусность. Существуют и другие способы сверления стекла.

Делаем витраж.

Традиционная технология изготовления витражей сложна, дорога, и под силу лишь опытным мастерам-художникам. Но если у вас "руки растут откуда надо", то украсить дверь самодельным витражом из битого стекла на силикатном клее будет вполне под силу. Сначала разрабатывают рисунок будущего "произведения" (выполняют на листе бумаги в натуральную величину и в цвете). Затем наклеивают его с обратной стороны стекла, на котором будет выполняться витраж, "лицом" вниз.

После этого тонкой кистью с быстросохнущей краской черного, темно-синего или темно-коричневого цвета наносят контуры изображения. Цветное стекло для витража можно получить из подручного материала (зеленое и коричневое - из разбитых бутылок, красное - из светофильтров либо от автомобильных фар и т.д.). Подобранные по цвету стекла разбиваются на осколки до размера, необходимого для выполнения декоративного орнамента. Стекла с наклеенным рисунком укладывают в горизонтальное положение на ровное основание лицевой стороной вверх и протирают нашатырным спиртом.

На подготовленную таким образом поверхность наносят слой силикатного клея и выкладывают мозаику. Через 4-6 часов поверхность витража заливают сплошным слоем клея таким образом, чтобы он покрывал все выступающие осколки. Клей сглаживает все шероховатости витража, поверхность становится волнистой, блестящей, хорошо видна на просвет.

Раскрашиваем...

"Морозные узоры" на стекле получают с помощью столярного клея. Для этого стеклу сначала придают матовость, обрабатывая песком вручную или пескоструйным аппаратом. На матовую поверхность наносят двух-трехмиллиметровый слой горячего крепкого раствора столярного клея. Высыхая, клей отрывает тонкую пленку стекла, которая легко снимается щеткой.

Многослойное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: целесообразно использовать в качестве стекол, защищающих от взлома, от пуль, от огня и шума, для защиты человека от различных травм, а также для изготовления изолирующих стеклопакетов.

Многослойным или ламинированным называется стекло, состоящее из двух или более слоев, "склеенных" вместе с помощью пленки или ламинирующей жидкости. Слои могут быть: выполненные из стекла одного или различных типов, прямые или гнутые в соответствии с заданной формой (форму им придают до склейки).

Процесс ламинирования сложный, выполняется с помощью автоматизированной линии в несколько стадий. Последний этап проводится в автоклаве под воздействием тепла и давления. Ламинирование не увеличивает механическую прочность стекла, но делает его "безопасным" - при разрушении осколки не разлетаются во все стороны, а остаются "висеть" на эластичной пленке. Кроме того, такие стекла (целые, разумеется) хорошо защищают и от ультрафиолетового излучения. Ламинированные стекла продают как в виде больших пластин, из которых нарезают полотна требуемого размера, так и в виде готовых изделий определенных форм и размеров.

Оконное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление окон, витражей, балконных дверей, световых фонарей, теплиц, оранжерей и других светопрозрачных ограждающих конструкций жилых зданий и промышленных сооружений.

Качественные листы оконного стекла прозрачны и бесцветны - никаких радужных и матовых пятен, несмываемых налетов, и других следов выщелачивания на поверхности! Допускаются зеленоватый и голубоватый оттенки, но при условии, что они не снижают коэффициента светопропускания (соотношения двух световых потоков - прошедшего через лист стекла к падающему на этот же лист).

Прочность стекла зависит от нескольких составляющих: способа выработки и обработки поверхностей и торцов, однородности, степени отжига или закалки, состояния поверхности листа и его размеров. Выбирая стекло, помните, что появившиеся в процессе изготовления на поверхностях листа и в его объеме микротрещины и неоднородности снижают прочность примерно в 100 раз. Внимательно осмотрите кромки, они должны быть ровными, а углы целыми. Даже небольшие сколы и зазубрины по кромкам станут концентраторами напряжения, такое стекло - не жилец. Наличие маленьких дефектов (пузырей, инородных включений, царапин и так далее) возможно, но регламентируются специальными стандартами.

Для обычного оконного остекления чаще применяют листы толщиной 2,5-4 мм. Для больших же окон и витражей они не годятся, не выносят ветровой нагрузки. В таких случаях следует устанавливать более толстое стекло - 6 или даже 10 мм. Причем чем выше расположено большое окно, тем толще должно быть стекло и тем меньше площадь его листа.

И еще одна важная вещь. Хотя свойства стекла мало зависят от направления его резки, все же желательно размечать длинную сторону оконного стекла параллельно длинной стороне раскраиваемого листа. Оформляя заказ, имейте это в виду. Кстати, нарезка стекла удорожает его стоимость примерно на 30 процентов.

Солнцезащитное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление окон, а также солнцезащитных устройств - козырьков, вертикальных экранов и т.д. Наиболее уместно применение в зданиях с активным использованием кондиционеров.

Солнцезащитные стекла либо отражают либо поглощают излучение. Теплопоглощающие получают введением в стекломассу специальных добавок, окрашивающих ее в зеленовато-голубоватые или серые тона. Такие стекла пропускают 65-75 процентов света, а инфракрасных лучей - всего 30-35 процентов, причем их способность пропускать и поглощать лучи (при едином химическом составе) зависит от толщины листа.

При высоком коэффициенте поглощения света "темные" теплопоглощающие стекла могут сильно нагреваться (на 50-70 градусов выше окружающей среды), поэтому их не рекомендуется использовать в наружном остеклении. Их также нежелательно подвергать неравномерному нагреву или охлаждению. Второй вид стекол, которые призваны защищать от солнца, - с прозрачными для видимых лучей спектра тонкими окиснометаллическими, керамическими или полимерными покрытиями. Покрытия эти наносят на одну из поверхностей обычного бесцветного стекла. Такие стекла тоже поглощают часть инфракрасного солнечного излучения, но нагреваются значительно меньше, а их светотехнические характеристики мало зависят от толщины листа.

Благодаря солнцезащитным стеклам летом в помещении не так жарко, контрастность и яркость освещаемых предметов меньше. В результате снижается утомляемость глаз, люди меньше устают. Однако от прямых солнечных лучей такие стекла не защищают (яркость солнечного диска остается слишком высокой), так что от жалюзи или штор отказываться не надо.

Приобретая солнцезащитное стекло, учтите: искажение цветов просматриваемых через него предметов должно быть минимальным.

Теплосберегающее стекло (энергосберегающее).

ОБЛАСТЬ ПРИМЕНЕНИЯ: используются в основном при производстве стеклопакетов.

Если Вы покупаете газовую или обычную электрическую плиту, обратите внимание на фиксацию крышки панели конфорок. Очень удобно и безопасно, когда Вы можете оставить крышку плиты в любом положении (под любым углом наклона). Это достигается путем специальной балансировки шарниров.

Выпускаются стекла как с "твердыми" покрытиями - К-стекло, и с так называемыми "мягкими" - i-стекло. В отличие от "мягкого" покрытия "твердые" имеют неотъемлемую слабую поверхностную дымку, особенно заметную при ярком освещении. Окно с таким стеклом выглядит как вымытое грязной водой.

Такие стекла наиболее часто применяются в современных ПВХ-окнах, ощутимо экономя энергию. Например, при наружной температуре -26 градусов и температуре в помещении +20, температура на поверхности стекла внутри помещения будет +5,1 - у обычного стеклопакета, +11 - у стеклопакета с К-стеклом, +14 - с i-стеклом.

Узорчатое стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление оконных и дверных проемов, устройство перегородок в жилых, общественных и промышленных зданиях. Не рекомендуется применять узорчатое стекло в помещениях с большим количеством пыли, копоти и т.п.

Узорчатое листовое стекло имеет на одной или обеих поверхностях четкий рельефный повторяющийся рисунок и бывает как бесцветным, так и цветным. Цветное получают из окрашенного "в массе стекла" или нанесением на одну из поверхностей бесцветных окиснометаллических покрытий.

Это декоративный материал. Наружные и внутренние витражи, ширмы, перегородки из него в фойе, вестибюлях, залах кафе получаются великолепные. А вот "выгораживать" узорчатым стеклом помещения для конфиденциальных разговоров не стоит. Узорчатое, как и обычное или цветное стекло - не преграда для любителей подслушивать.

Цвет и рисунок поверхности стекла должен соответствовать утвержденным эталонам. Глубина рельефных линий - от 0,5 до 1,5 мм. Узорчатое стекло должно пропускать и рассеивать свет. Коэффициент светопропускания бесцветного варианта при освещении рассеянным светом, если узоры нанесены только на одной стороне - не менее 0,75, если узоры на двух сторонах - 0,7. Светопропускание цветных узорчатых стекол определяется составом, цветом стекла и покрытий и составляет 30-65%.

Закаленное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление окон и перегородок, дверей, ограждений балконов, лестничних маршей и т.д., а также при производстве изолирующих стеклопакетов или ламинированных стекол.

Закаленные стекла изготавливают из листов неполированного, полированного или узорчатого стекла на специальных закалочных установках. При необходимости в стекле предварительно делают требуемые вырезы, отверстия, обрабатывают кромки, потому что готовые закаленные стекла нельзя резать, сверлить и подвергать другим видам механической обработки.

Закалка стекла в некотором роде похожа на закалку стали. Сначала его разогревают выше температуры размягчения, а затем быстро охлаждают в струях воздуха. При охлаждении первыми затвердевают поверхностные слои стекла. В них при остывании внутренних слоев возникают остаточные напряжения сжатия. Эти-то напряжения и обеспечивают механическую прочность и термостойкость стекла.

Прочность закаленного стекла на изгиб и удар в 5-6 раз больше прочности обычного стекла, при этом и термическая стойкость его существенно выше. Разбитое закаленное стекло распадается на мелкие острые осколки. Причем это регламентированно требованиям стандартов качества - при контрольном разрушении острым молоточком массой 75 граммов закаленные стекла должны иметь не менее 40 осколков в квадрате размерами 50х50 мм или 160 осколков в квадрате 100х100 мм.

Наиболее уязвимым местом закаленного стекла являются его кромки. При монтаже конструкций необходимо оберегать его торцы от ударов, царапин и других повреждений.

Светопропускание прозрачного закаленного стекла составляет не менее 84 процентов.

Армированное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление окон, световых фонарей, перегородок в производственных, общественных и жилых зданиях, для устройства балконных ограждений. Армирование стекла производят так: в середину листа параллельно его поверхности в процессе изготовления помещают металлическую сетку с квадратными ячейками.

Сетку применяют сварную из стальной проволоки, а для стекла высшей категории качества - еще и с защитным алюминиевым покрытием. Сторона квадратной ячейки составляет 12,5 или 25 мм. Сетка должна быть расположена по всей площади листа на расстоянии не менее 1,5 мм от поверхности стекла. В результате получается светопропускающий материал, обладающий повышенной безопасностью и огнестойкостью.

Здесь надо внести ясность. Армирование не увеличивает механическую прочность стекла и даже снижает его примерно в 1,5 раза. От воров оно тоже не спасет. Зато наличие сетки не позволит осколкам разлетаться и выпадать из переплетов, если, например, в него влетит мяч или камень. Качественное армированное стекло должно отламываться по линии надреза, не растрескиваясь. Если в нем много пузырей - это брак.

Одна из поверхностей "армостекла" может быть узорчатой или рифленой. Есть и цветное армированное стекло, изготовляется оно из стекломассы, окрашенной окислами металлов. Наиболее распространены цвета - золотисто-желтый, зеленый, лилово-розовый, голубой.

Работать с армированным стеклом в домашних условиях довольно сложно (трудно отколоть маленькие кусочки), но можно. Нарезают его обычным способом, потом отделяют куски друг от друга, а выступающие по краям кончики проволоки "откусывают" плоскогубцами. Проволока тонкая и отламывается легко.

Крепить армированное стекло лучше всего в переплетах сплошными штапиками со всех четырех сторон листа через резиновые прокладки или на замазке (мастике).

) обратимы. Температурный интервал T f - Т g , в пределах к-рого происходят эти процессы, наз. интервалом стеклования (T f -т-ра перехода из жидкого состояния в пластичное, Т g -т-ра перехода из пластичного состояния в твердое). Интервал стеклования (обычно 100-200 °С) зависит от хим. состава и скорости охлаждения стекла неорганического и представляет собой переходную область, в пределах к-рой происходит резкое изменение его св-в. В стекле неорганическом существуют образования (рои, кластеры или атомные комплексы) с размерами от 0,5 до 2 нм и разл. включения технол. или ликвационного происхождения от 5,0 до 100,0 нм.

Физико-химические свойства и применение. Оптические св-ва. Стекла неорганические отличаются прозрачностью в разл. областях спектра. Оксидные стекла неорганические характеризуются высокой прозрачностью в видимой области спектра: коэф. прозрачности т(т = I/I 0 , где I 0 - интенсивность падающего на пов-сть стекла света, I-интенсивность света, прошедшего сквозь стекло) для оконного стекла неорганического 0,83-0,90, для оптического-0,95-0,99.

В связи с этим стекло неорганическое незаменимо при остеклении зданий и разл. видов транспорта, изготовлении зеркал и оптич. приборов, включая лазерные, лаб. посуды, ламп разл. ассортимента и назначения, осветит. аппаратуры, телевизионной техники, волоконно-оптич. линий связи, хим. аппаратуры.

В зависимости от состава и условий получения стекло неорганическое способно по-разному преломлять, рассеивать и поглощать свет в видимой, УФ, ИК и рентгеновской областях спектра (см. Оптические материалы), Нек-рым стеклам неорганическим свойственна также фоточувствительность, т. е. способность изменять коэф. поглощения под действием УФ или рентгеновского облучения, a -лучей, нейтронов , что используют в произ-ве т. наз. фотохромных стекол неорганических, а также при изготовлении аппаратуры и приборов для радиац. техники. Наиб. высоким светопропусканием в ИК области обладают алюмофосфатные и халькогенидные стекла неорганические, повышенным-стекла неорганические на основе SiO 2 ; УФ лучи интенсивно поглощают стекла неорганические, содержащие оксиды Pb, Fe, Ti, рентгеновские и a -лучи-стекла неорганические с высоким содержанием оксидов Рb или Ва.

Галогенидные стекла неорганические на основе BeF 2 отличаются уникальным комплексом оптич. постоянных, высокой устойчивостью к действию жестких излучений и агрессивных сред, таких, как F 2 , HF. Стекла неорганическое на основе фторидов Zr и Ва прозрачны в видимой и ИК областях спектра. Халькогенидные стекла неорганические обладают также электронной проводимостью; применяются в телевизионных высокочувствит. камерах, ЭВМ (в качестве переключателей или элементов запоминающих устройств).

Плотность промышленных стекол неорганических колеблется от 2,2 до 8,0 г/см 3 . Низкие значения плотности характерны для бо-ратных и боросиликатных стекол неорганических; среди силикатных стекол неорганических наим. плотностью обладает кварцевое. Введение в состав стекол неорганических щелочных и щел.-зем. оксидов приводит к увеличению его плотности: плотность возрастает при эквимолекулярной замене одного оксида другим в рядах Li 2 O < Na 2 O < К 2 О и MgO < CaO < SrO < ВаО < РbО. Плотность последних стекол неорганических достигает 8,0 г/см 3 .

Мех. св-ва. Стекло неорганическое-хрупкий материал, не обладает пластич. деформацией , весьма чувствителен к мех. воздействиям, особенно ударным. Значение модуля упругости различных стекол неорганических колеблется в пределах 44,2-87,2 ГПа. Наибольшее его значение характерно для малощелочных алюмосиликатных стекол неорганических с высоким содержанием оксидов Be, Mg и Ca, наименьшее-для боро- и свинцовосиликатных стекол неорганических с высоким содержанием оксидов В и Рb; модуль упругости кварцевого стекла неорганического 73,2 ГПа. Ударная вязкость силикатных стекол неорганических 1,5-2,0 кН/м, в то же время сопротивление сжатию такое же, как у чугуна,-0,5-2,5 ГПа.

Электрич. св-ва стекол неорганических зависят от состава и т-ры среды-стекла неорганические могут быть диэлектриками , полупроводниками или проводниками. Большая группа оксидных стекол неорганических (силикатные, боратные, фосфатные) относится к классу изоляторов; почти идеальный изолятор - кварцевое стекло неорганическое. Поскольку носители тока в оксидных стеклах неорганических -катионы щелочных и щел.-зем. металлов , электропроводность, как правило, возрастает с увеличением их содержания в стеклах неорганических и повышением т-ры. Стеклянные изоляторы используют для высоковольтных линий электропередач. Пригодность электротехнических стекол неорганических для работы в тех или иных температурных условиях зависит от их состава и оценивается по т-ре (ТК 100), при к-рой стекло неорганическое имеет уд. электрич. проводимость 1,00·10 -6 См·м -1 . Для кварцевого стекла ТК 100 600°С, для других, используемых в электротехн. пром-сти,-230-520°С.

Диэлектрич. проницаемость e обычных промышленных стеклах неорганических невелика, причем самое низкое значение у кварцевого стекла неорганического и стеклообразного В 2 О 3 (3,8-4,0). С увеличением содержания в стеклах неорганических ионов щелочных и тяжелых металлов (Ва, Рb), обладающих высокой поляризуемостью , e повышается в силу влияния ионной поляризации . Возрастает она также с повышением т-ры выше 200 °С и при действии частот до 50 Гц. Диэлектрич. потери наиб. низки для силикатных стекол неорганических, для кварцевого стекла неорганического при 20°С и частоте 10 -10 Гц tgd 0,0001. Для закаленных стекол неорганических tgd в 1,5-2,0 раза выше, чем для отожженных. Электрич. прочность стекол неорганических (пробивное напряжение) в однородном электрич. поле достигает высоких значений (10 4 -10 5 кВ·м -1).

Термич. св-ва. Для обычных силикатных стекол термостойкость 60-100°С, для пирекса-280°С, для кварцевого стекла-ок. 1000°С. Для силикатных стекол неорганических коэф. теплопроводности 0,6-1,34 Вт/(м·°С), уд. теплоемкость при комнатной т-ре 0,3-1,05 кДж/(кг · К), коэф. линейного термич. расширения 5·10 -7 -120·10 -7 К -1 (последнее значение-для свинецсодержащих стекол неорганических).

Хим. стойкость стекол неорганических характеризуется высокой стойкостью к действию влажной атмосферы , воды , к-т (HF, Н 3 РО 4). Различают 4 гидролитич. класса хим. стойкости, оцениваемой по кол-ву щелочей и др. р-римых компонентов, перешедших в р-р при кипячении стекол неорганических в воде или р-рах к-т. Наиб. хим. стойкостью обладают кварцевое, боросиликатное (не более 17% В 2 О 3) и алюмосиликатное стекла неорганические. Хим. стойкость стекол неорганических существенно возрастает также и при введении в состав оксидов Ti, Zr, Nb, Та, Sn. Стойкость стекол неорганических к реагентам с рН < 7 повышают путем спец. обработки или защиты пов-сти пленками кремнийорг. соединений, фторидами Mg, оксидами А1 и Zn. По убыванию интенсивности разрушающего действия на стекла неорганические хим: реагенты располагаются в след. ряд: HF > Н 3 РО 4 > р-ры щелочей > р-ры щелочных карбонатов > НСl = H 2 SO 4 > вода . Макс. потеря массы стекол неорганических на 100 см 2 пов-сти в р-рах к-т (кроме HF, Н 3 РО 4) составляет ок. 1,5 мг, в то время как в щелочных средах возрастает до 150 мг.

Получение стекла. Традиц. технология пром. способа получения стекол неорганических состоит в подготовке сырьевых материалов (дробление , сушка , просеивание), приготовлении шихты (дозирование сырьевых компонентов и их смешивание), варке, формовании изделий, отжиге , обработке (термич., хим., мех.).

В зависимости от назначения стекла неорганического сырье для его изготовления содержит разл. оксиды и минералы . Кремнезем , являющийся главной составной частью стекол неорганических, вводят в шихту в виде кварцевого песка или- молотого кварца (вредные примеси-соед. Сr и Fe, придающие стеклам неорганическим желтовато-зеленый и зеленый цвет). Для варки высококачеств. бесцветных стекол неорганических песок очищают физ. и хим. способами; размер зерен песка 0,2-0,5 мм. В 2 О 3 в шихту вводят в виде буры или Н 3 ВО 3 , Р 2 О 5 -в виде фосфатов или Н 3 РО 4 , Аl 2 О 3 -в виде глинозема , каолина , глины , полевого шпата или Аl(ОН) 3 , Na 2 O-B виде Na 2 CO 3 , К 2 О-в виде К 2 СО 3 или KNO 3 , СаО-в виде мела или известняка , ВаО-в виде ВаСО 3 , Ba(NO 3) 2 или BaSO 4 , MgO-в виде доломита или магнезита , Li 2 O-B виде Li 2 СО 3 и прир. минералов лепидолита или сподумена, РbО-в виде сурика , глета или силиката Рb.

Вспомогат. материалы шихты - осветлители, обесцвечива-тели, красители , глушители, восстановители и др. В качестве осветлителей применяют небольшие кол-ва (NH 4),SO 4 , Na 2 SO 4 , NaCl, As 2 O 3 и As 2 O 5 в сочетании с (NH 4) 2 NO 3 , плавиковый шпат . Нек-рые из них одновременно являются и обесцвечивателями - окисляют в стеклах неорганических соед. Fe. Иногда для обесцвечивания в шихту вводят небольшие кол-ва в-в, окрашивающих стекломассу в дополнительный к зеленому

цвет (Se, соед. Со, Мh и др.). Окрашивают стекла неорганические, добавляя в шихту красящие в-ва. Желтую окраску стеклам неорганическим придают СrО 3 , NiO, Fe 2 O 3 , зеленую-Сr 2 О 3 и СиО, синюю-СuО и СоО, фиолетовую - NiO и Мn 2 О 3 , розовую-СоО, МnО и Se, коричневую - Fe 2 O 3 , FeS, красно-рубиновую - коллоидные Си и Аи.

Процесс стекловарения -процесс получения однородного расплава - условно разделяют на неск. стадий: образование силикатов , стеклообразование, осветление , гомогенизация, охлаждение.

Варку стекол неорганических проводят в печах непрерывного действия разл. типа-электрич., газопламенных, газопламенных с дополнит. электроподогревом. На первой стадии вследствие плавления эвтектич. смесей и солей происходит образование силикатов и др. промежут. соединений, появляется жидкая фаза. Силикаты и непрореагировавшие компоненты вместе с жидкой фазой представляют собой на этой стадии плотную спекшуюся массу. Для большинства силикатных стекол неорганических первый этап завершается при 1100-1200 °С. На стадии стеклообразования при 1200-1250 °С растворяются остатки шихты, происходит взаимное растворение силикатов , удаляется пена и образуется относительно однородная стекломасса, насыщенная, однако, газовыми включениями, поскольку обычно шихта силикатных стекол неорганических содержит ок. 18% химически связанных газов (СО 2 , SO 2 , O 2 и др.). На стадии осветления (1500-1600 °С, длительность-до неск. суток) происходит удаление из расплава газовых пузырей. Для ускорения процесса используют добавки , снижающие поверхностное натяжение массы. Одновременно с осветлением идет гомогенизация -усреднение расплава по составу. Наиб. интенсивно гомогенизация Осуществляется при мех. перемешивании стекломассы мешалками из огнеупорных материалов . На стадии охлаждения проводят подготовку стекломассы к формованию, для чего равномерно снижают т-ру на 400-500°С и достигают необходимой вязкости стекла неорганического. Формование изделий из стекломассы осуществляют разл. методами - прокатом, прессованием, прессвыдуванием, выдуванием, вытягиванием и др. на спец. стеклоформующих машинах.

Прессование применяют в произ-ве стеклянной тары, архитектурных деталей, посуды; выдувание-в произ-ве узкогорлой тары, сортовой (столовой) посуды, электровакуумных изделий; прессвыдувание-в машинном произ-ве ши-рокогорлой посуды; вытягивание-при изготовлении оконного и техн. листового стекол неорганических, трубок, труб, стержней, стеклянных волокон ; прокатка-при произ-ве листового стекла неорганического разл. видов, преим. строительного толщиной 3 мм и более. Др. методы: отливка в формы при изготовлении крупногабаритных предметов, моллирование - получение изделий в форме при нагр. твердых кусочков стекол неорганических.

При произ-ве пеностекла в шихту (или тонкоизмельченный стеклянный бой) добавляют парообразователи, выделяющие при варке стекла газ и вспучивающие стеклянную массу. Вспенивают стекло при 700-800 °С (для обычной шихты) или 950-1150 °С (для шихты из глин , горных пород , нерудных ископаемых).

Помимо традиц. метода получения применяют новые-в частности золь-гель процесс с образованием стекла.поликонденсация

Описанным выше методом получают заготовки, трубы и волокна для оптич. световодов и др. элементов волоконной оптики.

Металлич., халькогенидные и галогенидные стекла неорганические получают быстрым охлаждением расплавов (см. Стеклообразное состояние). При этом часто используют сверхвысокие скорости охлаждения (10 5 -10 8 К/с).

Историческая справка. Стеклоделие впервые возникло в Египте и Месопотамии в 4-м тыс. до н. э. В 1 в. н. э. наиб. крупный центр стеклоделия-Рим, с 9 до 17вв. н. э.-Венеция. В развитии стеклотехники условно выделяют 4 периода: в 4-2-м тыс. до н. э. из стекол неорганических делали украшения и предметы религиозного культа, во 2-1-м тыс. до н. э.-небольшие сосуды ; 1-е тыс. до н. э. началось с изобретения стеклодувной трубки, что позволило стеклоделию достичь большой высоты, а стекла неорганические превратить в материал широкого потребления; нач. 19-кон. 20 вв. характеризуется распространением машинной техники, созданием многочисл. составов стекол неорганических и проникновением его во все области быта, науки и техники. В России стеклоделие развивалось с 10-11 вв. Основоположник научного стеклоделия в России-М. В. Ломоносов, организовавший первую научную лабораторию по переработке стекла. Первый стекольный завод в России построен в 1635.

Лит.: Роусон Г., Неорганические стеклообразующие системы, пер. с англ., М., 1970; Аппен А. А., Химия стекла, 2 изд., Л., 1974; Лазерные фосфатные стекла, М.,-1980; Борисова 3. У., Халькогенидные полупроводниковые стекла, Л., 1983; Химическая технология стекла и ситаллов , М., 1983; Фельц А., Аморфные и стеклообразные неорганические твердые тела , пер. с нем., М., 1986; Неорганические стекла и изделия на их основе для волоконно-оптических систем связи и датчиков, в сб.: Итоги науки и техники, сер . Технология силикатных и тугоплавких неметаллических материалов, т. 2, М., 1989; Physilische Chemie der Glasoherflache, Lpz., 1981; Shufflebotham P.K., "J. of non-crystalline solids", 1987, v. 92, № 2-3, p. 183-244; Rawson Н„ "IEE Proc.", 1988, pt A, v. 135, № 6, p. 325-45. П.Д. Саркисов, Л. А. Орлова.

Изделия из стекла классифицируют;

По способу формования (выработки);

Размерам;

Видам и сложности декорирования;

Комплектности;

Назначению.

По способу формования стеклоизделия подразделяются:

На прессованные;

Прессовыдувные;

Выдувные;

Тянутые;

Моллированные.

Прессованные изделия из стекла вырабатываются в форме за один прием из порции стекломассы ручным или механизированным способом под дав­лением пуансона, вводимого внутрь формы.

Прессовыдувные изделия вырабатываются из порции стекломассы, поме­щенной в черновую форму и раздуваемой впоследствии в чистой форме воздухом от компрессора.

Выдувные изделия в свою очередь подразделяются на изделия из стекла ручного выдувания и на изделия из стекла механизированного выдувания.

Изделия из стекла ручного выдувания вырабатываются вручную с помо­щью выдувной трубки в форме или свободным выдуванием.

Изделия из стекла механизированного выдувания вырабатываются из пор­ции стекломассы, поданной в чистую форму с последующим выдуванием ее при вращении.

Тянутые изделия получаются методом литья, сочленения, прокатки, цен­трифугирования и вытягивания.

Моллированные изделия из стекла вырабатываются при нагревании заго­товки из стекла до температуры размягчения и прогибания его под дей­ствием собственной массы и/или с помощью прессующего устройства до окончательной формы.

Изделие из стекла многостадийной выработки получают путем соедине­ния отдельных элементов из стекла, изготовленных в две или более стадии.

Изделие из накладного стекла вырабатывается путем сплавления двух или более слоев различных по цвету стекол. Коэффициенты термического рас­ширения этих стекломасс должны быть одинаковыми.

Комбинированное изделие из стекла вырабатывается путем комбинирования стекла с другими материалами.

Изделие из стекла центрифугированной выработки изготовляются за один прием из порции стекломассы под действием центробежной силы.

Изделие упрочненное вырабатывается из стекла повышенной механиче­ской прочности,достигнутой за счет термической и/или химической об­работки и/или специальным способом выработки из нескольких слоев сте­кол разного состава.

Классификация по форме . Форма изделия должна сочетаться с его функциональным назначени­ем, эстетическими и гигиеническими особенностями, а также согласовы­ваться с возможностями метода формования и свойствами стекла. Форма должна создавать удобства пользования изделием, а также быть устойчи­вой и обеспечивать длительный срок службы.

Стеклоизделия подразделяются на полые и плоские.

Полые - графины, кувшины, рюмки, фужеры, стаканы и вазы. Их фор­мы весьма разнообразны (цилиндрические, конические, овальные, шаро­видные и др.).


Плоские - тарелки, блюда, кабареты разнообразных конфигураций (овальные, прямоугольные, круглые, многогранные).

Посуда полая - изделия, имеющие внутреннюю глубину не более 25 мм, измеренную от нижней внутренней точки до горизонтальной плос­кости, проходящей через край (точку перелива).

По размерам стеклянные бытовые изделия подразделяются на мелкие, средние, крупные, особо крупные.

Мелкие - высота до 100 мм (гутенские изделия - до 160 мм), диаметр до 100 мм (гутенские изделия - до 160 мм), емкость до 100 мл; гутенские изделия производятся выдуванием без формы.

Средние - высота от 100 до 250 мм (гутенские изделия - от 160 до 23 мм), диаметр от 100 до 150 мм (гутенские изделия - от 160 до 230 мм" емкость от 100 до 500 мл.

Крупные - высота свыше 250 мм (гутенские - 230 мм) диаметр свыш 150 (гутенские - свыше 230 мм), емкость свыше 500 мл.

Особо крупные - высота свыше 350 мм, диаметр свыше 250 мм, емкосг более 1500 см 3 .

Классификация изделий по видам и сложности декорирования. Художественно-декоративную ценность изделий из стекла повышают различные методы украшения (разделки, наносимые на стеклянные изделия, разнообразны по природе, методу нанесения, сложности, цвету и другим признакам).

Различают разделки, наносимые на изделия в горячем (в процессе вы­работки) и в холодном состоянии (готовые изделия).

Вид украшения зависит от назначения изделия, его формы, способа выработки, химического состава и других особенностей.

Изделия, декорированные в горячем состоянии

Изделия из стекла свободного выдувания (гнутое изделие из стекла) от­формовываются и декорируются в вязко-пластичном состоянии с помощью инструментов, предназначенных для этой операции.

Изделия из стекла с наводкой делаются из бесцветного стекла с добавка­ми, которое при последующем охлаждении и повторном нагревании при­обретает цвет.

Изделия из стекла кракле декорируются быстрым охлаждением набора в воде или во влажных опилках для образования тонких поверхностных тре­щинок, оправляющихся при дальнейшем его нагревании и выработке. Из­делия с разделкой кракле имеют невысокую прочность и термическую стой­кость.

Изделия из стекла с оптическим эффектом сначала выдувают в форме, которая меньше готового изделия и имеет рисунок в виде граней, волн и др. Затем его помещают в форму несколько большего размера с гладкой внутренней поверхностью. Окончательно изделия выдувают, вращая в фор­ме, при этом грани и волны на поверхности оглаживаются и остаются только в толще стенок.

Изделия из стекла с рельефами производятся в рельефных формах при прессовании или выдувании.

Изделия из стекла с газовыми включениями декорируются воздушными лентами, нитями и пузырьками.

Изделия из стекла с инородными включениями получают вплавлением в стекломассу различных предметов, изготовленных из других материалов.

Изделия из стекла с орнаментом декорируются налепами, крошкой, стер­женьками, лентами, нитями с последующим подогреванием или набором стекла и дальнейшим его формованием (украшение филигранью или вить­ем, насыпью, стеклотканью).

Изделия из стекла, декорированные в холодном состоянии.

Ассортимент этих изделий более разнообразен в сравнении с изделия­ми, декорируемыми в горячем состоянии.

На готовые изделия разделки наносят механическим и химическим спо­собами, а также поверхностным декорированием.

К изделиям из стекла, декорированным в холодном состоянии механи­ческими способами, относятся:

Изделия их стекла с плоской гранью, декорированные шлифовальными или полировальными плоскостями с помощью абразивного круга или аб­разивного материала.

Изделия из стекла с алмазной гранью, декорированные нанесением гра­ней в различном направлении по профилю и глубине с помощью абразив­ного материала.

Для ускорения работы в процессе формования на стеклоизделия нано­сят контуры рисунка, которые затем дошлифовывают специальными кру­гами.

Изделия с матовой шлифовкой декорируются на шлифовальном круге без последующей полировки.

Изделия гравированные декорируются ультразвуком, лазером или грави­рующими инструментами.

Разделки, наносимые химическим способом или травлением, могут быть прозрачными или матовыми. Этот метод украшения стеклянных изделий заключается в разрушении поверхности стекла плавиковой кислотой или солями фтора. Изделия предварительно покрывают защитным слоем из черного воска и парафина. После этого изделия помещают в травильные ванны из смеси плавиковой соляной и серной кислот (кислота разрушает поверхность стекла без защитного слоя), при этом образуется матовый рисунок. Если в ванне смесь плавиковой и серной кислот, то рисунок полу­чается прозрачный.

Травление по сложности и глубине рисунка различают:

Простое;

Сложное;

Глубокое художественное.

Простое травление - несложный повторяющийся рисунок в виде лома­ных спиралей и зигзагообразных линий. Рисунок наносится на гальотирных машинах.

Сложное травление - для него характерна более сложная композиция, рисунок которого наносят на специальных машинах.

Глубокое художественное травление - украшение двух- и многослойных изделий. Наружный слой должен быть цветным, а внутренний - бесцвет­ным.

Изделия из стекла с поверхностным декорированием - изделия из стек­ла, декорированные росписью шелкотрафаретной печатью, распылени­ем, переводными картинками.

По комплектности стеклянную бытовую посуду подразделяют на штуч­ную и комплектную.

Штучные изделия выпускают массовыми экземплярами, различными по составу стекломассы, назначению, форме, размерам, украшениям.

Комплектные изделия, входящие в комплект, должны иметь единое сти­левое и композиционное направление.

Набор - комплект, состоящий из нескольких изделий одного назначения и одинакового вида (в количестве не более шести предметов).

Сервиз - комплект (набор), состоящий из двух и более изделий разных видов (например, ваза для крюшона с подносом и шестью кружками).

По назначению стеклянные изделия подразделяются на следующие группы:

Стеклянная посуда;

Декоративные изделия;

Прочие изделия.

К группе стеклянной посуды относятся изделия из стекла, используемые в быту и сфере общественного питания, для приготовления, подачи и при­нятия пищи, напитков и для сервировки стола.

В ассортимент посуды для подачи пищи и напитков включаются:

Блюда, вазы для крема;

Блюда для гарнира;

Вазы для фруктов; . "

Блюда для пирогов;

Графины для воды и пива;

Масленки;

Селедочницы;

Сахарницы;

Тарелки;

Салатники;

Вазы для варенья, конфет, печенья;

Чайники.

Блюда, тарелки, блюда для торта - по форме самые разнообразные: оваль­ные, круглые с вырезным краем и гладким или с разделкой по краю «шли­фовка бусами» различных размеров.

Блюда для гарнира (кабареты) по форме бывают овальные, круглые, прямоугольные, неправильной формы с ручками и без ручек, с секциями - трех-, семиместные.

Салатники по форме - круглые, квадратные, фигурные; в форме бота, ладьи; край салатников бывает гладкий, волнистый, вырезной, с раздел­кой по краю «шлифовка бусами» различных размеров; салатники изготов­ляют без ножек или на одной-четырех ножках.

Масленка - изделие с крышкой, на крышке - держатель.

Селедочница - изделие продолговатой, овальной формы, без ножек.

Ваза для крема (креманка) - полое изделие круглой, овальной или ци­линдрической формы с ручкой и со сливом.

Графин для вина или воды - полое изделие каплевидных, фигурных форм, в форме штофа (прямоугольной) с пробкой.

Ваза для фруктов - изделие на ножках или без них, различных форм: шаровидной, круглой, в форме корзинок с ручками и без них, в форме ладьи, с вырезным краем.

Сливочники - изделия с ручками и со сливом, по форме бывают оваль­ные, цилиндрические, на поддоне и без него.

Вазы для варенья, конфет, печенья выпускаются в форме корзинок с ручка­ми, в форме ладьи, круглые, шаровидные, конусные, фигурные на нож­ках и бей них, с вырезным или гладким краем или с разделкой «шлифовка бусами». -

Сахарницы - изделия по форме квадратные, круглые, шаровидные, ци­линдрические, овальные без ножек или на фигурных одной-трех ножках.

В ассортимент посуды для принятия пищи и напитков включаются:

бокальчики, бокалы, фужеры, стаканы для вина и пива, для шампан­ского, для минеральных и фруктовых вод, салатники однопорционные. В ассортимент посуды чайной - блюдца, чашки, блюдца для варенья, стака­ны для чая, чашки для чая или кофе.

Изделия для принятия напитков выпускаются на ножках (рюмки,бокалы, фужеры) и без ножек (стаканы).

Форма изделий самая различная: фасонные, конусные, овальные, кап­левидные, шаровидные, в форме: полушария, тюльпана, креманки, ци­линдрические с развернутым краем, сужающиеся книзу, с перехватом посредине.

Ножки изделий в свою очередь также разнообразны:

Высокие и низкие;

Фигурные, гладкие;

Шлифованные и нешлифованные.

По емкости изделия подразделяют:

На бокальчики емкостью 25 г;

Бокалы емкостью 110-200 г;

Фужеры емкостью 200-250 г;

Рюмки емкостью 30-150 г.

К изделиям без ножек для принятия напитков относятся стаканы и кружки для пива.

Стаканы в зависимости от емкости подразделяются:

Для вина 25-100 г;

Пива 200-300 г;

Минеральных и фруктовых вод 250-300 г;

Шампанского 100-150 г.

Стаканы по форме бывают: цилиндрические, конусные, овальные, с развернутым краем, с заливным утолщенным дном.

Кружки - полое изделие с ручкой цилиндрической, шаровидной формы.

В ассортимент посуды для сервировки стола входят:

Подносы;

Лотки разнообразных форм;

Пепельницы с различным количеством выемок для папирос;

Подставки для салфеток;

Кольца для салфеток.

Стеклянные декоративные изделия:

Предметы прикладного искусства (вазы для цветов);

Скульптура;

Сувениры.

Изготавливают их как единичными экземплярами, так и массовыми.

Художественно-декоративные изделия отличаются сложной формой, раз­мерами и разнообразными украшениями (на них наносят наиболее цен­ные и дорогостоящие разделки).

Особое место среди художественно-декоративных изделий занимают изде­лия из хрусталя благодаря специфическим свойствам, присущим хрусталю.

При простукивании изделия из хрусталя издают продолжительный ме­лодичный звон. Звуковой эффект усиливается при увеличении содержания окиси свинца и уменьшении толщины стенок: изделия раскрывающейся формы отличаются большим звуковым эффектом.

Особенностью хрустальных изделий является также световой эффект, зависящий от количества свинца и угла гранения. При угле гранения 90 градусов отражение падающего на грань света наибольшее. Коэффициент отражения прямо пропорционален содержанию в стекле окислов свинца.

Хрустальные изделия изготовляют массивными и толстостенными, по­этому на них можно наносить глубокие алмазные грани и увеличивать тем самым отражение света.

К прочим изделиям относятся:

Наборы для туалетного столика;

Подставки для колец (ювелирные изделия);

Сигаретницы;

 

Возможно, будет полезно почитать: