Строение клетки клеточная стенка. Клеточная стенка. Строение. Функции. Отрывок, характеризующий Клеточная стенка

Наименьшей частью организма является клетка, она способна существовать самостоятельно и имеет все признаки живого организма. В данной статье мы узнаем, какое строение имеет растительная клетка, кратко расскажем об её функциях и особенностях.

Строение клетки растения

В природе существуют как одноклеточные растения, так и многоклеточные. Например, в подводном мире можно встретить одноклеточные водоросли, которые имеют все функции присущие живому организму.

Многоклеточная особь - это не просто набор клеток, а единый организм, способный образовывать различные ткани, органы, которые взаимодействуют друг с другом.

Строение растительной клетки у всех растений одинаковое и состоит из одних и тех же компонентов. Её состав следующий:

  • оболочка (пластинка, межклетник, плазмодесмы и плазмолеммы, тонопласт);
  • вакуоли;
  • цитоплазма (митохондрии; хлоропласты и другие органоиды);
  • ядро (ядерная оболочка, ядрышко, хроматин).

Рис. 1. Строение клетки растения.

В отличие от животной, растительная клетка имеет особую целлюлозную оболочку, вакуоль и пластиды.

Изучение строения и функций растительной клетки показало, что:

ТОП-4 статьи которые читают вместе с этой

  • самой значительной частью в организме является ядро , которое отвечает за все происходящие процессы. Оно содержит наследственную информацию, которая передаётся из поколения в поколение. От других органоидов отделяет ядро ядерная оболочка;
  • бесцветное вязкое вещество, которое наполняет клетку, называется цитоплазмой . Именно в ней находятся все органоиды;
  • под клеточной стенкой находится мембрана (тонопласт) , которая отвечает за обмен веществ. Это тоненькая плёнка, отделяющая оболочку от цитоплазмы;
  • клеточная стенка достаточно прочная, так как в её состав входит целлюлоза. Поэтому функциями стенки является защита и придача формы;
  • маленькими составными компонентами являются пластиды .

    Они могут быть цветными или бесцветными. Так, например, хлоропласты имеют зелёный цвет, именно в них происходит процесс фотосинтеза;

  • внутренняя полость, заполненная соком, называется вакуолью . Размер её зависит от возраста организма: чем он старше, тем больше вакуоль. В состав сока входит водный раствор минеральных солей и органических веществ. Он содержит различные сахара, ферменты, минеральные кислоты и соли, белки и пигменты;
  • Рис. 2. Изменения размера вакуоли при росте растения.

    • митохондрии способны передвигаться вместе с цитоплазмой, их основная роль - обмен веществ. Именно здесь происходит процесс дыхания и образования АТФ;
    • аппарат Гольджи может иметь различные формы (диски, палочки, зёрнышки). Его роль - накопление и выведение ненужных веществ;
    • рибосомы синтезируют белок. Находятся они в цитоплазме, ядре, митохондриях, пластидах.

    Клеточное строение растений учёные открыли ещё в XVII веке. Клетки апельсиновой мякоти видны невооружённым глазом, но чаще всего рассмотреть растительный организм можно под микроскопом.

    Рис. 3. Строение аппарата Гольджи.

    Особенности растительного организма

    Исследование разнообразия царства растений выявило такие особенности:

    • в отличие от других живых организмов, растения имеют вакуоль, которая хранит все питательные и полезные вещества, расщепляет отжившие старые органеллы и белки;
    • клеточная стенка по своему составу отличается от грибного хитина и стенок бактерий. В её состав входит целлюлоза, пектин и лигнин;
    • связь между клетками осуществляется при помощи плазмодесм – так называемые поры в клеточной стенке;
    • пластиды имеются только в растительном организме. Помимо хлоропластов это могут быть лейкопласты, которые делятся на два вида: одни из них запасают жиры, другие - крахмал. А также хромопласты, которые синтезируют и хранят пигменты;
    • в отличие от животного организма, у растительной клетки нет центриолей.

    Что мы узнали?

    Будучи самой маленькой частью всего организма, клетка может существовать самостоятельно. Она обеспечивает работу различных тканей и жизненно важных органов. Отличительными компонентами от других особей живой природы является строение клеточной стенки, наличие пластид и вакуолей. Каждый органоид имеет свои функции, без выполнения которых невозможно функционирование всего организма в целом.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.3 . Всего получено оценок: 1130.

Клеточная стенка (клеточная оболочка) – характерный признак растительной клетки, отличающий ее от клетки животной. Клеточная стенка придает клетке определенную форму. Культивируемые на специальных питательных средах клетки растений, у которых ферментативным путем удаляется стенка, всегда принимают сферическую форму. Клеточная стенка придает клетке прочность и защищает протопласт, она уравновешивает тургорное давление и препятствует, таким образом, разрыву плазмалеммы. Совокупность клеточных стенок образует внутренний скелет, поддерживающий тело растения и придающий ему механическую прочность.

Клеточная стенка бесцветна и прозрачна, легко пропускает солнечный свет. Обычно стенки пропитаны водой. По системе клеточных стенок осуществляется транспорт воды и растворенных в ней низкомолекулярных соединений (транспорт по апопласту).

Клеточная стенка состоит в основном из полисахаридов, которые можно подразделить на скелетные вещества и вещества матрикса.

Скелетным веществом клеточной стенки растений является целлюлоза (клетчатка) , представляющая собой бета-1,4-D-глюкан. Это самое распространенное органическое вещество биосферы. Молекулы целлюлозы представляют собой очень длинные неразветвленные цепи, они располагаются параллельно друг другу группами по нескольку десятков и скреплены многочисленными водородными связями. В результате образуются микрофибриллы , которые создают структурный каркас стенки и обусловливают ее прочность. Микрофибриллы целлюлозы видны только в электронный микроскоп, их диаметр равен 10-30 нм, длина достигает нескольких мкм.

Целлюлоза нерастворима и не набухает в воде. Она очень инертна в химическом отношении, не растворяется в органических растворителях, концентрированных щелочах и разведенных кислотах. Микрофибриллы целлюлозы эластичны и очень прочны на разрыв (сходны со сталью). Эти свойства определяют широкое применение целлюлозы и ее продуктов. Мировая продукция хлопкового волокна, состоящего почти целиком из целлюлозы, составляет 1,5 10 7 тонн в год. Из целлюлозы получают бездымный порох, ацетатный шелк и вискозу, целлофан, бумагу. Качественную реакцию на целлюлозу проводят с реактивом хлор-цинк-йод , целлюлозная клеточная стенка окрашивается в сине-фиолетовый цвет.

У грибов скелетным веществом клеточной стенки является хитин – полисахарид, построенный из остатков глюкозамина. Хитин еще более прочен, чем целлюлоза.

Микрофибриллы погружены в аморфный матрикс , обычно представляющий собой насыщенный водой пластичный гель. Матрикс является сложной смесью полисахаридов, молекулы которых состоят из остатков нескольких различных сахаров и представляют собой более короткие, чем у целлюлозы, и разветвленные цепи. Матричные полисахариды определяют такие свойства клеточной стенки, как сильная набухаемость, высокая проницаемость для воды и растворенных в ней низкомолекулярных соединений, катионообменные свойства. Полисахариды матрикса делят на две группы – пектиновые вещества и гемицеллюлозы .

Пектиновые вещества сильно набухают или растворяются в воде. Они легко разрушаются под действием щелочей и кислот. Простейшими представителями пектиновых веществ являются растворимые в воде пектовые кислоты – продукты полимеризации альфа-D-галактуроновой кислоты (до 100 единиц), связанных 1,4-связями в линейные цепи (альфа-1,4-D-галактуронан). Пектиновые кислоты (пектины) – это более высокомолекулярные (100-200 единиц) полимерные соединения альфа-D-галактуроновой кислоты, в которых карбоксильные группы частично метилированы. Пектаты и пектинаты – кальциевые и магниевые соли пектовых и пектиновых кислот. Пектиновые кислоты, пектаты и пектинаты растворимы в воде в присутствии сахаров и органических кислот с образованием плотных гелей.

В клеточных стенках растений в основном присутствуют протопектины – высокомолекулярные полимеры метоксилированной полигалактуроновой кислоты с арабинанами и галактанами, у двудольных растений в состав цепей галактуронана входит небольшое количество рамнозы. Протопектины нерастворимы в воде.

Гемицеллюлозы представляют собой разветвленные цепи, построенные из остатков нейтральных сахаров, чаще встречаются глюкоза, галактоза, манноза, ксилоза; степень полимеризации 50-300. Гемицеллюлозы химически более устойчивы, чем пектиновые вещества, они труднее гидролизуются и слабее набухают в воде. Гемицеллюлозы могут откладываться в стенках клеток семян в качестве запасных веществ (финиковая пальма, хурма). Пектиновые вещества и гемицеллюлозы связаны взаимными переходами. Помимо полисахаридов, в матриксе клеточных стенок присутствует особый структурный белок. Он связан с остатками сахара арабинозы и поэтому является гликопротеидом.

Матричные полисахариды не просто заполняют промежутки между целлюлозными микрофибриллами. Их цепи располагаются упорядоченно и образуют многочисленные связи как друг с другом, так и с микрофибриллами, что значительно повышает прочность клеточной стенки.

Клеточные стенки растений часто подвергаются химическим видоизменениям. Одревеснение , или лигнификация происходит в том случае, если в матриксе откладывается лигнин – полимерное соединение фенольной природы, нерастворимое в воде. Одревесневшая клеточная стенка теряет эластичность, резко повышается ее твердость и прочность на сжатие, снижается проницаемость для воды. Реактивами на лигнин являются: 1) флороглюцин и концентрированная хлористоводородная или серная кислота (одревесневшие стенки приобретают вишнево-красную окраску) и 2) сульфат анилина , под действием которого одревесневшие стенки становятся лимонно-желтыми. Лигнификация характерна для стенок клеток проводящей ткани ксилемы (древесины) и механической ткани склеренхимы.

Опробковение , или суберинизация происходит в результате отложения с внутренней стороны клеточной стенки гидрофобных полимеров – суберина и воска . Суберин представляет собой смесь эфиров полимерных жирных кислот. Мономерами воска являются жирные спирты и восковые эфиры. Воск легко извлекается органическими растворителями и быстро плавится, образует кристаллы. Суберин – аморфное соединение, не плавится и не растворяется в органических растворителях. Суберин и воск, образуя чередующиеся параллельные слои, выстилают всю полость клетки с внутренней стороны в виде пленки. Субериновая пленка практически непроницаема для воды и для газов, поэтому после ее образования клетка обычно отмирает. Опробковение характерно для стенок клеток покровной ткани пробки. Реактивом на опробковевшую клеточную стенку является судан III , окраска оранжево-красная.

Кутинизации подвергаются наружные стенки клеток покровной ткани эпидермы. Кутин и воск откладываются чередующимися слоями на наружной поверхности клеточной стенки в виде пленки – кутикулы . Кутин представляет собой жироподобное полимерное соединение, близкое по химической природе и свойствам суберину. Кутикула предохраняет растение от излишнего испарения воды с поверхности растения. Окрасить ее можно реактивом судан III в оранжево-красный цвет.

Минерализация клеточной стенки происходит вследствие отложения в матриксе большого количества минеральных веществ, чаще всего кремнезема (оксида кремния), реже оксалата и карбоната кальция. Минеральные вещества придают стенке твердость и хрупкость. Отложение кремнезема характерно для клеток эпидермы хвощей, осок и злаков. Приобретенная в результате окремнения жесткость стеблей и листьев служит защитным средством против улиток, а также значительно снижает поедаемость и кормовую ценность растений.

У некоторых специализированных клеток наблюдается ослизнение клеточной стенки. При этом вместо целлюлозной вторичной стенки происходит отложение аморфных, сильно гидратированных кислых полисахаридов в виде слизей и камедей , близких по химической природе к пектиновым веществам. Слизи хорошо растворяются в воде с образованием слизистых растворов. Камеди клейкие, вытягиваются в нити. В сухом виде они имеют роговую консистенцию. При отложении слизи протопласт постепенно оттесняется к центру клетки, его объем и объем вакуоли постепенно уменьшаются. В конце концов, полость клетки может целиком заполниться слизью, и клетка отмирает. В некоторых случаях слизь может проходить через первичную клеточную стенку на поверхность. В синтезе и секреции слизи основное участие принимает аппарат Гольджи.

Выделяемая растительными клетками слизь выполняет различные функции. Так, слизь корневого чехлика служит в качестве смазки, облегчающей рост кончика корня в почве. Слизевые железки насекомоядных растений (росянка) выделяют ловчую слизь, к которой приклеиваются насекомые. Слизь, выделяемая наружными клетками семенной кожуры (лен, айва, подорожники), закрепляет семя на поверхности почвы и защищает проросток от высыхания. Слизь окрашивается реактивом метиленовый синий в голубой цвет.

Выделение камедей обычно происходит при поранении растений. Например, камедетечение из пораненных участков стволов и ветвей часто наблюдается у вишни и сливы. Вишневый клей представляет собой застывшую камедь. Камедь выполняет защитную функцию, закрывая рану с поверхности. Образуются камеди в основном у древесных растений из семейств бобовых (акации, трагакантовые астрагалы) и розоцветных подсемейства сливовых (вишня, слива, абрикос). Камеди и слизи используются в медицине.

Клеточная стенка является продуктом жизнедеятельности протопласта. Полисахариды матрикса, гликопротеид стенки, лигнин и слизи образуются в аппарате Гольджи. Синтез целлюлозы, образование и ориентация микрофибрилл осуществляются плазмалеммой. Большая роль в ориентации микрофибрилл принадлежит микротрубочкам, которые располагаются параллельно откладывающимся микрофибриллам вблизи плазмалеммы. Если микротрубочки разрушить, образуются только изодиаметрические клетки.

Образование клеточной стенки начинается во время деления клетки. В плоскости деления образуется клеточная пластинка, единый слой, общий для двух дочерних клеток. Она состоит из пектиновых веществ, имеющих полужидкую консистенцию; целлюлоза отсутствует. Во взрослой клетке клеточная пластинка сохраняется, но претерпевает изменения, поэтому ее называют срединной , или межклеточной пластинкой (межклеточным веществом) (рис. 2.16 ). Срединная пластинка обычно очень тонка и почти неразличима.

Сразу после образования клеточной пластинки протопласты дочерних клеток начинают откладывать собственную клеточную стенку. Она откладывается изнутри как на поверхности клеточной пластинки, так и на поверхности других клеточных стенок, принадлежавших ранее материнской клетке. После деления клетка вступает в фазу роста растяжением, который обусловлен интенсивным осмотическим поглощением клеткой воды, связанным с образованием и ростом центральной вакуоли. Тургорное давление начинает растягивать стенку, но она не рвется благодаря тому, что в нее постоянно откладываются новые порции микрофибрилл и веществ матрикса. Отложение новых порций материала происходит равномерно по всей поверхности протопласта, поэтому толщина клеточной стенки не уменьшается.

Стенки делящихся и растущих клеток называют первичными . Они содержат много (60-90%) воды. В сухом веществе преобладают матричные полисахариды (60-70%), содержание целлюлозы не превышает 30%, лигнин отсутствует. Толщина первичной стенки очень невелика (0,1-0,5 мкм).

Для многих клеток отложение клеточной стенки прекращается одновременно с прекращением роста клетки. Такие клетки окружены тонкой первичной стенкой до конца жизни ( рис. 2.16).

Рис. 2.16. Паренхимная клетка с первичной стенкой.

У других клеток отложение стенки продолжается и по достижении клеткой окончательного размера. При этом толщина стенки увеличивается, а объем, занимаемый полостью клетки, сокращается. Такой процесс носит название вторичного утолщения стенки, а саму стенку называют вторичной (рис. 2.17 ).

Вторичная стенка может рассматриваться как дополнительная, выполняющая главным образом механическую, опорную функцию. Именно вторичная стенка ответственна за свойства древесины, текстильного волокна, бумаги. Вторичная стенка содержит значительно меньше воды, чем первичная; в ней преобладают микрофибриллы целлюлозы (40-50% от массы сухого вещества), которые располагаются параллельно друг другу. Из полисахаридов матрикса характерны гемицеллюлозы (20-30%), пектиновых веществ очень мало. Вторичные клеточные стенки, как правило, подвергаются одревеснению. В неодревесневших вторичных стенках (лубяные волокна льна, волоски хлопчатника) содержание целлюлозы может достигать 95%. Большое содержание и строго упорядоченная ориентация микрофибрилл определяют высокие механические свойства вторичных стенок. Часто клетки, имеющие вторичную одревесневшую клеточную стенку, после завершения вторичного утолщения отмирают.

Срединная пластинка склеивает соседние клетки. Если ее растворить, стенки клеток теряют связь друг с другом и разъединяются. Этот процесс называется мацерация . Довольно обычна естественная мацерация, при которой пектиновые вещества срединной пластинки переводятся в растворимое состояние с помощью фермента пектиназы и затем вымываются водой (перезрелые плоды груши, дыни, персика, банана). Часто наблюдается частичная мацерация, при которой срединная пластинка растворяется не по всей поверхности, а лишь в углах клеток. Вследствие тургорного давления соседние клетки в этих местах округляются, в результате чего образуются межклетники (рис. 2.16 ). Межклетники образуют единую разветвленную сеть, которая заполняется парами воды и газами. Таким образом, межклетники улучшают газообмен клеток.

Характерная особенность вторичной стенки – ее неравномерное отложение поверх первичной стенки, в результате чего во вторичной стенке остаются неутолщенные участки – поры . Если вторичная стенка не достигает большой толщины, поры выглядят как мелкие углубления. У клеток с мощной вторичной стенкой поры в разрезе имеют вид радиальных каналов, идущих от полости клетки до первичной стенки. По форме порового канала различают поры двух типов – простые и окаймленные (рис. 2.17 ).

Рис. 2.17. Типы пор : А – клетки с вторичными стенками и многочисленными простыми порами; Б – пара простых пор; В – пара окаймленных пор.

У простых пор диаметр порового канала по всей длине одинаковый и имеет форму узкого цилиндра. Простые поры характерны для паренхимных клеток, лубяных и древесинных волокон.

Поры в двух смежных клетках, как правило, возникают друг против друга. Эти общие поры имеют вид одного канала, разделенного тонкой перегородкой из срединной пластинки и первичной стенки. Такая совокупность двух пор смежных стенок соседних клеток носит название пары пор и функционирует как одно целое. Разделяющий их канал участок стенки называется замыкающей пленкой поры , или поровой мембраной . В живых клетках замыкающая пленка поры пронизана многочисленными плазмодесмами (рис. 2.18 ).

Плазмодесмы присущи только растительным клеткам. Они представляют собой тяжи цитоплазмы, пересекающие стенку смежных клеток. Число плазмодесм в одной клетке очень велико – от нескольких сотен до десятков тысяч, обычно плазмодесмы собраны в группы. Диаметр плазмодесменного канала составляет 30-60 нм. Его стенки выстланы плазмалеммой, непрерывной с плазмалеммой смежных клеток. В центре плазмодесмы проходит мембранный цилиндр – центральный стержень плазмодесмы , непрерывный с мембранами элементов эндоплазматической сети обеих клеток. Между центральным стержнем и плазмалеммой в канале находится гиалоплазма, непрерывная с гиалоплазмой смежных клеток.

Рис. 2.18. Плазмодесмы под электронным микроскопом (схема ): 1 – на продольном срезе; 2 – на поперечном срезе; Пл – плазмалемма; ЦС – центральный стержень плазмодесмы; ЭР – элемент эндоплазматического ретикулума.

Таким образом, протопласты клеток не полностью изолированы друг от друга, а сообщаются по каналам плазмодесм. По ним происходит межклеточный транспорт ионов и мелких молекул, а также передаются гормональные стимулы. Посредством плазмодесм протопласты клеток в растительном организме образуют единое целое, называемое симпластом , а транспорт веществ через плазмодесмы получил название симпластического в отличие от апопластического транспорта по клеточным стенкам и межклетникам.

У окаймленных пор (рис. 2.17 )канал резко суживается в процессе отложения клеточной стенки, поэтому внутреннее отверстие поры, выходящее в полость клетки, гораздо уже, чем наружное, упирающееся в первичную стенку. Окаймленные поры характерны для рано отмирающих клеток водопроводящих элементов древесины. У них поровый канал по направлению к замыкающей пленке воронковидно расширяется, а вторичная стенка нависает в виде валика над расширенной частью канала, образуя камеру поры. Название окаймленной поры происходит оттого, что при рассмотрении с поверхности внутреннее отверстие имеет вид маленького круга или узкой щели, тогда как наружное отверстие как бы окаймляет внутреннее в виде круга большего диаметра или более широкой щели.

Поры облегчают транспорт воды и растворенных веществ от клетки к клетке, в то же время не снижая прочности клеточной стенки.

Растительные клетки, подобно клеткам прокариот и грибов, заключены в сравнительно жесткую клеточную стенку. Некоторые клетки лишены клеточной стенки. Это клетки, служащие для полового и бесполого размножения (зооспоры и гаметы водорослей и низших грибов, мужские гаметы высших растений ), а также у некоторых представителей золотистых, желто-зеленых и пирофитовых водорослей (они не способны сохранять постоянную форму тела, их перемещение происходит с помощью выростов - псевдоподий – амебоидное движение) .

Образующие клеточную стенку вещества вырабатываются плазмалеммой и аппаратом Гольджи и откладываются снаружи клетки.

Этими веществами являются полисахариды:

1. Целлюлоза - у высших растений (у водорослей – целлюлоза, маннан и ксилан)

2. Гемицеллюлоза (ее молекулы имеют форму цепей, как и у целлюлозы, однако ее цепи короче, менее упорядочены).

3. Пектиновые вещества (занимают пространство между макрофибриллами целлюлозы);

Также в состав клеточной стенки входит структурный белок («прошивает» полисахаридный каркас поперек).

Клеточная стенка, отлагающаяся во время деления клеток растения, называется первичной клеточной стенкой (рис. 1).

Рис. 1. Схема строения первичной клеточной стенки

Позже в результате утолщения она может превратиться во вторичную клеточную стенку .

Молекулы целлюлозы образуют тонкие нити. Соединяясь друг с другом по нескольку десятков с помощью водородных связей, нити целлюлозы формируют микрофибриллы, а они – макрофибриллы. Макрофибриллы погружены в пектиновый матрикс и «прошиты» молекулами структурного белка.

Молекулы целлюлозы отличает большая прочность на разрыв, сравнимая с прочностью стали . Целлюлоза не растворима ни в горячей воде, ни в концентрированных щелочах, ни в органических растворителях.

Однако клеточная стенка проницаема для воды и растворенных в ней веществ, это связано со свойствами пектинов.

Пространство между клеточными стенками соседних клеток называется срединной пластинкой . Она состоит их клейких студнеобразных пектатов магния и кальция. В клеточных стенках некоторых созревающих плодов нерастворимые пектиновые вещества постепенно превращаются в растворимые пектины. При добавлении сахара эти последние образуют гели; поэтому их используют при приготовлении варенья и желе.

Клеточные стенки не одинаковы по толщине на всем своем протяжении, а имеют тонкие участки, которые называются первичными поровыми полями (рис. 2) .

Рис. 2. Первичные поровые поля, поры и плазмодесмы. А. Паренхимная клетка с первичной клеточной оболочкой и первичными поровыми полями – тонкими участками оболочки. Б. Клетки со вторичными клеточными стенками и многочисленными простыми порами. В. Пара простых пор. Г. Пара окаймленных пор.


Пора здесь – наиболее тонкое место в оболочке (углубление), хотя пора может содержать и отверстие. Через поры осуществляется связь между соседними клетками. Сквозь поровые поля и поры проходят тонкие тяжи цитоплазмы – плазмодесмы.

Свойства первичной клеточной стенки:

1. эластична , по мере роста клетки растягивается и растет;

2. создает определенную прочность клетки и способна защитить ее от механических повреждений;

3. прозрачна, пропускает солнечные лучи ;

4. является местом передвижения воды и неорганических веществ, растворенных в ней.

Первичная клеточная стенка может сохраняться до конца жизни клетки, если ее отложение прекращается вместе с прекращением роста клетки.

Если рост клетки прекращается, а отложение элементов оболочки изнутри продолжается, образуется более прочная вторичная клеточная стенка . Они особенно нужны клеткам, выполняющим механическую и проводящую воду функции . Протопласт клетки (живое содержимое клетки), как правило, отмирает после отложения вторичной клеточной стенки. В ней больше целлюлозы, а пектиновые вещества и структурный белок отсутствуют.

Во вторичной клеточной стенке выделяют три слоя – наружный, средний и внутренний (рис. 3) . Они отличаются направлением расположения целлюлозных микрофибрилл.

Рис. 3. Схема расположения микрофибрилл целлюлозы в структуре

Вопрос

Ботаника- наука о строении, жизни растения и их сообществ краткая история ботаники и ее разделы.

Открытие клетки принадлежит английском ученому Гуку который впервые рассмотрел срез пробки под микроскопом. На срезе было видно что пробка состоит из многочисленных камер, клеток. В то же время Грю и Мальпиги впервые описали строение органов растений, подтвердив их клеточное строение. Они считали что клетки это пузырьки наполненные слизистым содержимым. Долгое время господствовало представление о том что основные жизненные свойства клетки связаны с ее стенкой. Содержимому клетки отводилась второстепенная роль. только в 19 веке когда накопилис данные о внутреннем содержимом клетки в 1831 Броун обнаружил в клетке ядро. К концу 30-х годов 19 в были открыты основные компоненты клетки и было сформулировано представление о клетке как о структурной единице живых организмов

Морфлогия- внешнее строение и внутреннее строение растений

Систематика- классификация разнообразия организмов

Цитология – наука о клетке

Гистология – наука о тканях

Эмбриология – учение об образовании и закономерностях развития зародыша растений

География – распределение растений на Земле

Геоботаника- наука о растительных сообществах

Экология – взаимоотношение растений с окр.редой

Вопрос 2

Клетка- основная структурная единица растений. Общий план строения растительной клетки. Вещества их локализации .

Многообразие клеток сводят к двум видам: паренхимным и прозенхимным.

Состав клетки:

Цитоплазма-в ней происходят все процесы клеточного обмена

Рибосомы- Располагаются на ЭПС и на наружной ядерной мембране, в цитоплазме, в пластидах, митохондриях.

Аппарат Гольджи- образован комплексом биологических мембран в виде узких каналов, расширяющихся на концах в цистерны

Митохондрии-образованы двумя мембранами: наружняя гладкая, а внутренняя образует выросты внутрь матрикса- кристы.

Лизосомы- ограниченны биологической мембраной шаровидные тельца

Пластиды- двумембранный органоид.Внутри находится строма пронизанная параллельно расположенными мембранами – тилакоидами

Вопрос 3

Ядро, строение и функции. Деление клетки. Митоз

Ядро- важнейшая клеточная структура, рерулирующая жизнедеятельность клетки. то место хранения и воспроизведения наследственной информации, определяющей признаки данной клетки и всего организма в целом. Ядро служит также центром управления обменом веществ и почти всех процессов, происходящих в клетке. Структура я дра однакова у всех эукариотических клеток: ядерная оболочка, Яденый сок, хроматин и ядрышко

Ядерная оболочка- Ядерная состоит из двух узких темных слоев - наружной и внутренней мембран. Наружняя ядерная мембрана переходит в ЭПС, на ней имеются рибосомы, она регулирует обме веществ между ядром и цитоплазмой

Ядерный сок- обеспечивает взаимосвязь между ядерными структурами.

Хромосомы - плотные удлиненные или нитевидные образования, видимые только при делении клетки. Содержат ДНК, в которой заключена наследственная информация, передающаяся из поколения в поколение

Ядрышко - сферической или неправильной формы. В них синтезируется РНК, которая входит в состав рибосомы

Деление клетки:

Митоз - непрямое деление клетки. Митоз состоит из 4 фаз: профазы, метафазы, анафазы, телофазы.

Первая фаза - профаза. В профазе хромосомы спирализуются, укорачиваются, утолщаются и становятся видны. Каждая хромосома состоит из двух хроматид. Они соединены центромерой. К концу профазы ядерная оболочка и ядрышки растворяются. Центриоли расходятся к полюсам клетки. Образуется веретено деления.

В метафазе хромосомы располагаются на экваторе. Хорошо видны число и форма хромосом. Нити веретена деления тянутся от полюсов к центромерам

В анафазе центромеры делятся и хроматиды (дочерние хромосомы) расходятся к разным полюсам. Движение хромосом происходит благодаря нитям веретена, которые, сокращаясь, растягивают дочерние хромосомы от экватора к полюсам.

Митоз заканчивается телофазой. Хромосомы, состоящие из одной хроматиды, находятся у полюсов клетки. Они деспирализуются и становятся не видны

Вопрос 4

Пластиды. Типы пластид.

Пластиды это органеллы характерные только для растительных клеток. Они выполняют различные функции, связанные, главным образом, с синтезом органических веществ. В зависимости от окраски, обусловленной наличием пигментов, различают три основных типа пластид: хлоропласты, хромопласты и лейкопласты.

Хлоропласты - зеленые пластиды, содержащие зеленый пигмент хлорофилл. Главная функция хлоропластов - фотосинтез, в результате которого происходит образование богатых энергией органических веществ. Синтез хлорофилла обычно происходит только на свету, поэтому растения, выращенные в темноте или при недостатке света, становятся бледно-желтыми.

Хромопласты представляют собой пластиды, содержащие пигменты из группы каротиноидов, имеют желтую, оранжевую или красную окраску. К каротиноидам относят широко распространенные каротины (оранжевые) и ксантофиллы (желтые). Хромопласты имеют разнообразную форму. Они образуются в осенних листьях, корнеплодах (морковь), зрелых плодах и т.д. В отличие от хлоропластов, форма хромопластов очень изменчива, но видоспецифична, что объясняется их происхождением и состоянием в них пигментов.

Лейкопласты это мелкие бесцветные пластиды шаровидной, яйцевидной или веретеновидной формы. Они обычно встречаются в клетках органов, скрытых от солнечного света: в корневищах, клубнях, корнях, семенах, сердцевине стеблей.Часто лейкопласты собираются вокруг ядра, окружая его со всех сторон.

Деятельность лейкопластов специализирована и связана с образованием запасных веществ. Одни из них накапливают преимущественно крахмал, другие – белки а третьи – масла.

Вопрос 5

Клеточная стенка. Ее биологическое значение.

Клеточная стенка (оболочка) является неотъемлемым компонентом клеток растений и грибов и представляет собой продукт их жизнедеятельности. Она придает клеткам механическую прочность, защищает их содержимое от повреждений и избыточной потери воды, поддерживает форму клеток и их размер, а также препятствует разрыву клеток в гипотонической среде. Клеточная стенка участвует в поглощении и обмене различных ионов, т. е. является ионообменником. Через клеточную оболочку осуществляется транспорт веществ.

Клеточная стенка, формирующаяся во время деления клеток и их роста путем растяжения, называется первичной. После прекращения роста клетки на первичную клеточную стенку изнутри откладываются новые слои, и образуется прочная вторичная клеточная оболочка.

Растительные клетки, подобно клеткам прокариот и грибов, заключены в сравнительно жесткую клеточную стенку. Материал для построения этой клеточной стенки секретирует сама заключенная в ней живая клетка (протопласт). По своему химическому составу клеточные стенки растений отличаются от клеточных стенок прокариот и грибов (табл. 2.1), но этим структурам свойственны некоторые общие функции, а именно функции опоры и защиты; кроме того, и те и другие ограничивают подвижность клеток. Клеточная стенка, отлагающаяся во время деления клеток растения, называется первичной клеточной стенкой. Позже в результате утолщения она может превратиться во вторичную клеточную стенку. В этом разделе мы опишем процесс образования первичной клеточной стенки. На рис. 7.21 воспроизведена электронная микрофотография, на которой можно видеть одну из ранних стадий этого процесса.

Строение клеточной стенки

Первичная клеточная стенка состоит из целлюлозных микрофибрилл, погруженных в матрикс, в состав которого входят сложные полисахариды. Целлюлоза тоже представляет собой полисахарид (ее химическое строение описано в разд. 5.2.3). Особо важное значение для той роли, которую целлюлоза выполняет в клеточных стенках, имеют ее волокнистое строение и высокая прочность на разрыв, сравнимая с прочностью стали. Отдельные молекулы целлюлозы - это длинные полисахаридные цепи. Множество таких молекул, сшитых друг с другом поперечными водородными связями, собраны в прочные пучки, называемые микрофибриллами . Погруженные в матрикс микрофибриллы образуют каркас клеточной стенки. Матрикс клеточной стенки состоит из полисахаридов, которые для удобства описания делят обычно на пектины и гемицеллюлозы в зависимости от их растворимости в различных растворителях, употребляемых для экстракции. Пектины , или пектиновые вещества , при экстракции обычно выделяются первыми, поскольку их растворимость выше. Это - смешанная группа кислых полисахаридов (построенных из моносахаридов арабинозы и галактозы, галактуроновой кислоты, принадлежащей к классу сахарных кислот, и метанола). Длинные молекулы пектиновых веществ могут быть линейными или разветвленными. Срединная пластинка , скрепляющая стенки соседних клеток, состоит из клейких студнеобразных пектатов магния и кальция. В клеточных стенках некоторых созревающих плодов нерастворимые пектиновые вещества превращаются снова в растворимые пектины. При добавлении сахара эти последние образуют гели; поэтому их используют как желирующие вещества.

Гемицеллюлозы - это смешанная группа полисахаридов, растворимых в щелочах (к ним относятся полимеры ксилозы, галактозы, маннозы, глюкозы и глюкоманнозы). У гемицеллюлоз, как и у целлюлозы, молекулы имеют форму цепи, однако их цепи короче, менее упорядочены и сильнее разветвлены.

Клеточные стенки гидратированы: 60-70% их массы обычно составляет вода. По свободному пространству клеточной стенки вода перемещается беспрепятственно. Присутствие воды оказывает влияние на химические и физические свойства полисахаридов клеточной стенки.

Материалы с повышенной механической прочностью, подобные материалу клеточной стенки, т. е. состоящие более чем из одного компонента, называются композиционными материалами или композитами ; их прочность обычно выше, чем у каждого из компонентов в отдельности. Системы из волокон и матрицы (в технике основу композиционного материала называют не матриксом, а матрицей. - Прим. перев) находят широкое применение в технике, так что на изучение их свойств как в технике, так и в биологии тратится много усилий. Матрица, работающая на сжатие, передает напряжение волокнам, работающим на растяжение. Она же обеспечивает абразивную стойкость и, по-видимому, стойкость к неблагоприятным химическим воздействиям, возможным в тех или иных условиях. В строительном деле издавна применяется железобетон, т. е. сочетание бетона со стальной арматурой. Позже появился более легкий композиционный материал, в котором роль матрицы играет пластик, а роль арматуры - стеклянное или углеродное волокно. Древесина представляет собой композиционный материал; своей прочностью она обязана клеточным стенкам. Примером жестких композиционных материалов биологического происхождения могут также служить кость, хрящ и покрывающая экзоскелет членистоногих кутикула. Существуют и гибкие композиционные материалы, например соединительная ткань.

У некоторых клеток, например у клеток мезофилла листа, на всем протяжении их жизни имеется только первичная клеточная стенка. Однако у большинства клеток на внутреннюю поверхность первичной клеточной стенки (кнаружи от плазматической мембраны) отлагаются дополнительные слои целлюлозы, т. е. возникает вторичная клеточная стенка. Обычно это происходит после того, как клетка достигнет своего максимального размера, и лишь немногие клетки, например клетки колленхимы, продолжают рост во время этой фазы. Вторичное утолщение клеточных стенок растения не следует путать с вторичным утолщением (вторичным ростом) самого растения, т. е. с увеличением толщины ствола в результате добавления новых клеток.

В любом слое вторичного утолщения целлюлозные волокна располагаются под одним и тем же углом, но в разных слоях этот угол различен, чем и обеспечивается еще большая прочность структуры. Такое расположение целлюлозных волокон показано на рис. 7.27.

Некоторые клетки, такие, как трахеальные элементы ксилемы и клетки склеренхимы, претерпевают интенсивную лигнификацию (одревеснение); при этом все слои целлюлозы (первичный и три вторичных) пропитываются лигнином - сложным полимерным веществом, не относящимся к полисахаридам. В клетках протоксилемы отложения лигнина имеют кольцевую, спиральную или сетчатую форму, как это видно на рис. 8.11. В других случаях лигнификация бывает сплошной, если не считать так называемых поровых полей, т. е. тех участков в первичной клеточной стенке, через которые осуществляются контакт между соседними клетками при помощи группы плазмодесм (разд. 8.1.3 и рис. 8.7). Лигнин скрепляет целлюлозные волокна и удерживает их на месте. Он действует как очень твердый и жесткий матрикс, усиливающий прочность клеточных стенок на растяжение и в особенности на сжатие (предотвращает прогибы). Он же обеспечивает клеткам дополнительную защиту от неблагоприятных физических и химических воздействий. Вместе с целлюлозой, остающейся в клеточных стенках, лигнин придает древесине те особые свойства, которые делают ее незаменимым строительным материалом.

Функции клеточной стенки

Ниже перечисляются основные функции клеточных стенок растений.

1. Клеточные стенки обеспечивают отдельным клеткам и растению в целом механическую прочность и опору. В некоторых тканях прочность усиливается благодаря интенсивной лигнификации клеточных стенок (небольшое количество лигнина присутствует во всех клеточных стенках).

2. Относительная жесткость клеточных стенок и сопротивление растяжению обусловливают тургесцентность клеток, когда в них осмотическим путем поступает вода. Это усиливает опорную функцию во всех растениях и служит единственным источником опоры для травянистых растений и для таких органов, как листья, т. е. там, где отсутствует вторичный рост. Клеточные стенки также предохраняют клетки от разрыва в гипотонической среде.

3. Ориентация целлюлозных микрофибрилл ограничивает и в известной мере регулирует как рост, так и форму клеток, поскольку от расположения этих микрофибрилл зависит способность клеток к растяжению. Если, например, микрофибриллы располагаются поперек клетки, окружая ее как бы обручами, то клетка, в которую путем осмоса поступает вода, будет растягиваться в продольном направлении.

4. Система связанных друг с другом клеточных стенок (апопласт ) служит главным путем, по которому передвигаются вода и минеральные вещества. Клеточные стенки скреплены между собой с помощью срединных пластинок. В стенках имеются небольшие поры, сквозь которые проходят цитоплазматические тяжи, называемые плазмодесмами . Плазмодесмы связывают живое содержимое отдельных клеток - объединяют все протопласты в единую систему, в так называемый симпласт .

5. Наружные клеточные стенки эпидермальных клеток покрываются особой пленкой-кутикулой, состоящей из воскообразного вещества кутина, что снижает потери воды и уменьшает риск проникновения в растение болезнетворных организмов. В пробковой ткани клеточные стенки по завершении вторичного роста пропитываются суберином, выполняющим сходную функцию.

6. Клеточные стенки сосудов ксилемы, трахеид и ситовидных трубок (с ситовидными пластинками) приспособлены для дальнего транспорта веществ по растению. Этот вопрос рассматривается в гл. 8 и 14.

7. Стенки клеток эндодермы корня пропитаны суберином и поэтому служат барьером на пути движения воды (разд. 14.1.5).

8. У некоторых клеток их видоизмененные стенки хранят запасы питательных веществ; таким способом, например, запасаются гемицеллюлозы в некоторых семенах.

9. У передаточных клеток площадь поверхности клеточных стенок увеличена и соответственно увеличена площадь поверхности плазматической мембраны, что повышает эффективность переноса веществ путем активного транспорта (разд. 14.8.6).

 

Возможно, будет полезно почитать: