Управляем кулером (термоконтроль вентиляторов на практике). Активная система охлаждения силовых приборов Принципиальная схема регулятора

Управляем кулером (термоконтроль вентиляторов на практике)

Тем, кто использует компьютер каждый день (и особенно каждую ночь), очень близка идея Silent PC. Этой теме посвящено много публикаций, однако на сегодняшний день проблема шума, производимого компьютером, далека от решения. Одним из главных источников шума в компьютере является процессорный кулер.

При использовании программных средств охлаждения, таких как CpuIdle, Waterfall и прочих, или же при работе в операционных системах Windows NT/2000/XP и Windows 98SE средняя температура процессора в Idle-режиме значительно понижается. Однако вентилятор кулера этого не знает и продолжает трудиться в полную силу с максимальным уровнем шума. Конечно, существуют специальные утилиты (SpeedFan, например), которые умеют управлять оборотами вентиляторов. Однако работают такие программы далеко не на всех материнских платах. Но даже если и работают, то, можно сказать, не очень разумно. Так, на этапе загрузки компьютера даже при относительно холодном процессоре вентилятор работает на своих максимальных оборотах.

Выход из положения на самом деле прост: для управления оборотами крыльчатки вентилятора можно соорудить аналоговый регулятор с отдельным термодатчиком, закрепленным на радиаторе кулера. Вообще говоря, существует бесчисленное множество схемотехнических решений для таких терморегуляторов. Но нашего внимания заслуживают две наиболее простых схемы термоконтроля, с которыми мы сейчас и разберемся.

Описание

Если кулер не имеет выхода таходатчика (или же этот выход просто не используется), можно построить самую простую схему, которая содержит минимальное количество деталей (рис. 1).

Рис. 1. Принципиальная схема первого варианта терморегулятора

Ещё со времен "четверок" использовался регулятор, собранный по такой схеме. Построен он на основе микросхемы компаратора LM311 (отечественный аналог — КР554СА3). Несмотря на то, что применен компаратор, регулятор обеспечивает линейное, а не ключевое регулирование. Может возникнуть резонный вопрос: "Как так получилось, что для линейного регулирования применяется компаратор, а не операционный усилитель?". Ну, причин этому есть несколько. Во-первых, данный компаратор имеет относительно мощный выход с открытым коллектором, что позволяет подключать к нему вентилятор без дополнительных транзисторов. Во-вторых, благодаря тому, что входной каскад построен на p-n-p транзисторах, которые включены по схеме с общим коллектором, даже при однополярном питании можно работать с низкими входными напряжениями, находящимися практически на потенциале земли. Так, при использовании диода в качестве термодатчика нужно работать при потенциалах входов всего 0.7 В, что не позволяют большинство операционных усилителей. В-третьих, любой компаратор можно охватить отрицательной обратной связью, тогда он будет работать так, как работают операционные усилители (кстати, именно такое включение и использовано).

В качестве датчика температуры очень часто применяют диоды. У кремниевого диода p-n переход имеет температурный коэффициент напряжения примерно -2.3 мВ/°C, а прямое падение напряжения — порядка 0.7 В. Большинство диодов имеют корпус, совсем неподходящий для их закрепления на радиаторе. В то же время некоторые транзисторы специально приспособлены для этого. Одними из таких являются отечественные транзисторы КТ814 и КТ815. Если подобный транзистор привинтить к радиатору, коллектор транзистора окажется с ним электрически соединенным. Чтобы избежать неприятностей, в схеме, где этот транзистор используется, коллектор должен быть заземлен. Исходя из этого, для нашего термодатчика нужен p-n-p транзистор, например, КТ814.

Можно, конечно, просто использовать один из переходов транзистора как диод. Но здесь мы можем проявить смекалку и поступить более хитро:) Дело в том, что температурный коэффициент у диода относительно низкий, а измерять маленькие изменения напряжения достаточно тяжело. Тут вмешиваются и шумы, и помехи, и нестабильность питающего напряжения. Поэтому часто, для того чтобы повысить температурный коэффициент датчика температуры, используют цепочку последовательно включенных диодов. У такой цепочки температурный коэффициент и прямое падение напряжения увеличиваются пропорционально количеству включенных диодов. Но ведь у нас не диод, а целый транзистор! Действительно, добавив всего два резистора, можно соорудить на транзисторе двухполюсник, поведение которого будет эквивалентно поведению цепочки диодов. Что и сделано в описываемом терморегуляторе.

Температурный коэффициент такого датчика определяется отношением резисторов R2 и R3 и равен T cvd *(R3/R2+1), где T cvd — температурный коэффициент одного p-n перехода. Повышать отношение резисторов до бесконечности нельзя, так как вместе с температурным коэффициентом растет и прямое падение напряжения, которое запросто может достигнуть напряжения питания, и тогда схема работать уже не будет. В описываемом регуляторе температурный коэффициент выбран равным примерно -20 мВ/°C, при этом прямое падение напряжения составляет около 6 В.

Датчик температуры VT1R2R3 включен в измерительный мост, который образован резисторами R1, R4, R5, R6. Питается мост от параметрического стабилизатора напряжения VD1R7. Необходимость применения стабилизатора вызвана тем, что напряжение питания +12 В внутри компьютера довольно нестабильное (в импульсном источнике питания осуществляется лишь групповая стабилизация выходных уровней +5 В и +12 В).

Напряжение разбаланса измерительного моста прикладывается к входам компаратора, который используется в линейном режиме благодаря действию отрицательной обратной связи. Подстроечный резистор R5 позволяет смещать регулировочную характеристику, а изменение номинала резистора обратной связи R8 позволяет менять ее наклон. Емкости C1 и C2 обеспечивают устойчивость регулятора.

Смонтирован регулятор на макетной плате, которая представляет собой кусочек одностороннего фольгированного стеклотекстолита (рис.2).


Рис. 2. Монтажная схема первого варианта терморегулятора

Для уменьшения габаритов платы желательно использовать SMD-элементы. Хотя, в принципе, можно обойтись и обычными элементами. Плата закрепляется на радиаторе кулера с помощью винта крепления транзистора VT1. Для этого в радиаторе следует проделать отверстие, в котором желательно нарезать резьбу М3. В крайнем случае, можно использовать винт и гайку. При выборе места на радиаторе для закрепления платы нужно позаботиться о доступности подстроечного резистора, когда радиатор будет находиться внутри компьютера. Таким способом можно прикрепить плату только к радиаторам "классической" конструкции, а вот крепление ее к радиаторам цилиндрической формы (например, как у Orb-ов) может вызвать проблемы. Хороший тепловой контакт с радиатором должен иметь только транзистор термодатчика. Поэтому если вся плата целиком не умещается на радиаторе, можно ограничится установкой на нем одного транзистора, который в этом случае подключают к плате с помощью проводов. Саму плату можно расположить в любом удобном месте. Закрепить транзистор на радиаторе несложно, можно даже просто вставить его между ребер, обеспечив тепловой контакт с помощью теплопроводящей пасты. Еще одним способом крепления является применение клея с хорошей теплопроводностью.

При установке транзистора термодатчика на радиатор, последний оказывается соединенным с землей. Но на практике это не вызывает особых затруднений, по крайней мере, в системах с процессорами Celeron и PentiumIII (часть их кристалла, соприкасающаяся с радиатором, не имеет электрической проводимости).

Электрически плата включается в разрыв проводов вентилятора. При желании можно даже установить разъемы, чтобы не разрезать провода. Правильно собранная схема практически не требует настройки: нужно лишь подстроечным резистором R5 установить требуемую частоту вращения крыльчатки вентилятора, соответствующую текущей температуре. На практике у каждого конкретного вентилятора существует минимальное напряжение питания, при котором начинает вращаться крыльчатка. Настраивая регулятор, можно добиться вращения вентилятора на минимально возможных оборотах при температуре радиатора, скажем, близкой к окружающей. Тем не менее, учитывая то, что тепловое сопротивление разных радиаторов сильно отличается, может потребоваться корректировка наклона характеристики регулирования. Наклон характеристики задается номиналом резистора R8. Номинал резистора может лежать в пределах от 100 К до 1 М. Чем больше этот номинал, тем при более низкой температуре радиатора вентилятор будет достигать максимальных оборотов. На практике очень часто загрузка процессора составляет считанные проценты. Это наблюдается, например, при работе в текстовых редакторах. При использовании программного кулера в такие моменты вентилятор может работать на значительно сниженных оборотах. Именно это и должен обеспечивать регулятор. Однако при увеличении загрузки процессора его температура поднимается, и регулятор должен постепенно поднять напряжение питания вентилятора до максимального, не допустив перегрева процессора. Температура радиатора, когда достигаются полные обороты вентилятора, не должна быть очень высокой. Конкретные рекомендации дать сложно, но, по крайней мере, эта температура должна "отставать" на 5 — 10 градусов от критической, когда уже нарушается стабильность системы.

Да, еще один момент. Первое включение схемы желательно производить от какого-либо внешнего источника питания. Иначе, в случае наличия в схеме короткого замыкания, подключение схемы к разъему материнской платы может вызвать ее повреждение.

Теперь второй вариант схемы. Если вентилятор оборудован таходатчиком, то уже нельзя включать регулирующий транзистор в "земляной" провод вентилятора. Поэтому внутренний транзистор компаратора здесь не подходит. В этом случае требуется дополнительный транзистор, который будет производить регулирование по цепи +12 В вентилятора. В принципе, можно было просто немного доработать схему на компараторе, но для разнообразия была сделана схема, собранная на транзисторах, которая оказалась по объему даже меньше (рис. 3).


Рис. 3. Принципиальная схема второго варианта терморегулятора

Поскольку размещенная на радиаторе плата нагревается вся целиком, то предсказать поведение транзисторной схемы довольно сложно. Поэтому понадобилось предварительное моделирование схемы с помощью пакета PSpice. Результат моделирования показан на рис. 4.


Рис. 4. Результат моделирования схемы в пакете PSpice

Как видно из рисунка, напряжение питания вентилятора линейно повышается от 4 В при 25°C до 12 В при 58°C. Такое поведение регулятора, в общем, соответствует нашим требованиям, и на этом этап моделирования был завершен.

Принципиальные схемы этих двух вариантов терморегулятора имеют много общего. В частности, датчик температуры и измерительный мост совершенно идентичны. Разница заключается лишь в усилителе напряжения разбаланса моста. Во втором варианте это напряжение поступает на каскад на транзисторе VT2. База транзистора является инвертирующим входом усилителя, а эмиттер — неинвертирующим. Далее сигнал поступает на второй усилительный каскад на транзисторе VT3, затем на выходной каскад на транзисторе VT4. Назначение емкостей такое же, как и в первом варианте. Ну, а монтажная схема регулятора показана на рис. 5.


Рис. 5. Монтажная схема второго варианта терморегулятора

Конструкция аналогична первому варианту, за исключением того, что плата имеет немного меньшие размеры. В схеме можно применить обычные (не SMD) элементы, а транзисторы — любые маломощные, так как ток, потребляемый вентиляторами, обычно не превышает 100 мА. Замечу, что эту схему можно использовать и для управления вентиляторами с большим значением потребляемого тока, но в этом случае транзистор VT4 необходимо заменить на более мощный. Что же касается вывода тахометра, то сигнал тахогенератора TG напрямую проходит через плату регулятора и поступает на разъем материнской платы. Методика настройки второго варианта регулятора ничем не отличается от методики, приведенной для первого варианта. Только в этом варианте настройку производят подстроечным резистором R7, а наклон характеристики задается номиналом резистора R12.

Выводы

Практическое использование терморегулятора (совместно с программными средствами охлаждения) показало его высокую эффективность в плане снижения шума, производимого кулером. Однако и сам кулер должен быть достаточно эффективным. Например, в системе с процессором Celeron566, работающем на частоте 850 МГц, боксовый кулер уже не обеспечивал достаточной эффективности охлаждения, поэтому даже при средней загрузке процессора регулятор поднимал напряжение питания кулера до максимального значения. Ситуация исправилась после замены вентилятора на более производительный, с увеличенным диаметром лопастей. Сейчас полные обороты вентилятор набирает только при длительной работе процессора с практически 100% загрузкой.

Данная статья поможет в создании простого и в тоже время надежного устройства термоконтроля для "нагревающейся" аппаратуры (усилители, блоки питания и любых деталей, использующие радиаторы)
Принцип работы прост... терморезистор термопастой и скобой прижимается к радиатору, выставляется максимально допустимая температура, и как только радиатор нагреется до этой температуры включится вентилятор и будет охлаждать радиатор до того момента пока на терморезисторе не упадет температура.
Отличное решение для охлаждения усилителя, ведь если слушать музыку на тихой громкости охлаждение вентилятором и не нужно, незачем создавать лишний шум. А как только усилитель будет работать на высокой мощности и радиатор нагреется до максимально допустимой температуры в работу включится вентилятор. Максимально допустимая температура устанавливается или "на ощупь" или с помощью термометра. В моем случае метода "на ощупь" вполне хватило.

Схема:


Фото:

А теперь по схеме. Подстроечный резистор регулирует порог срабатывания вентилятора. Терморезистор советского происхождения, стоит копейки:


Операционный усилитель LM324 (4х канальный ОУ) можно заменить на LM358 (двухканальный ОУ) выиграете в размере.. но в цене они не отличаются... Вентилятор - обычный компьютерный на 12V... Транзистор можно заменить на любой похожий этой структуры. Больше то и добавить нечего...

Печатная плата четырехканальная, транзисторы заменены на более мощные BC639, на глупые вопросы "почему плата не соответствует схеме" не отвечаю:

Вариант крепления к радиатору.

Как известно, сейчас вместо больших и тяжелых радиаторов используются системы активного охлаждения с вентиляторами. В эпоху микропроцессоров и микроконтроллеров вентиляторы управляются, главным образом, с помощью ШИМ (англ. PWM — Pulse-Width Modulation), то есть регулируется ширина импульса, подаваемого на вентилятор. В некоторых случаях не стоит управлять вентилятором в импульсном режиме из-за повышенного риска помех, которые могут возникнуть в других частях схемы. Тогда нам и понадобится такой аналоговый контроллер оборотов.

Эта схема была разработана для активного охлаждения и позволяет регулировать вращение сразу 4-х вентиляторов. Датчиком температуры здесь является транзистор BD139, так как точность не важна, а применение транзистора этого типа позволяет снизить стоимость всей системы термоконтроля.

Кроме того, корпус этого транзистора легко прикручивается к радиатору, обеспечивая хороший тепловой контакт. Регулировка оборотов заключается в плавной смене выходного напряжения, поэтому не создает никаких электропомех, благодаря чему идеально подходит даже для малошумящих усилителей мощности. При тихом прослушивании УМЗЧ, где мощность потерь маленькая, а радиатор холодный — вентиляторов не слышно совсем.

Принципиальная схема регулятора


Принципиальная схема аналогового регулятора оборотов мотора

Основа — двойной операционный усилитель U1 (LM358). Выбор этого операционного усилителя продиктован не только его низкой ценой и доступностью, но, прежде всего, возможностью работы при выходных напряжениях, близких к нижней шине питания, то есть около потенциала массы.

Первая половина операционного усилителя (U1A) работает в конфигурации дифференциального усилителя с коэффициентом усиления 1. Усиление установлено с помощью резисторов R4-R7 (100k) и в случае необходимости их можно изменить путем изменения соотношения R7/R4 при сохранении такого же отношения R6/R5.

Датчиком температуры является транзистор T1 (BD139), а точнее его переход база-коллектор, подключенный в направлении нужной проводимости. Резистор R1 (22k) ограничивает ток, который течёт через T1. Напряжение на базе транзистора T1 при комнатной температуре будет в пределах 600 мВ и как в типовом разъеме PN будет изменяться с увеличением температуры на величину около 2.3 мВ/К.

Конденсатор C1 (100nF) фильтрует напряжение, которое затем поступает на резистор R4, то есть вход дифференциального усилителя U1A. Делитель построен на R2 (22k), P1 (5к) и R3 (120R) и он позволяет регулировать напряжение, которое подается на резистор R5 — неинвертированный вход усилителя U1A. Конденсатор C2 (100nF) фильтрует напряжение. В простейшем случае с помощью потенциометра P1 необходимо установить напряжение на С2, равное напряжению на C1 при комнатной температуре. Это приведет к тому, что на выходе усилителя U1A (pin 1) напряжение равно 0 (при комнатной температуре) и будет расти примерно на 2.3 мВ/K с увеличением температуры.

Вторая половина микросхемы (U1B) — усилитель с Ку 61, за значение которого отвечают элементы R9 (120k) и R8 (2k). Усиление задаётся соотношением этих резисторов, увеличенным на 1.

Исполнительный элемент — транзистор Дарлингтона T2 (TIP122), работающий в качестве буфера напряжения с большим максимальным выходным током. Резистор R10 (330R) ограничивает ток базы транзистора.

Напряжение с выхода U1A повышается более чем в 60 раз, после чего попадает на транзистор T2. Ток, протекающий через транзистор поступает через диоды D1-D4 (1N4007) на разъемы GP2-GP5, к которым подключают вентиляторы. Конденсаторы C5-C8 (100uF) фильтруют питание вентиляторов, а, кроме того, устраняют помехи, которые генерируют вентиляторы во время работы.

О блоке питания термоконтроллера. Система питается напряжением 15 В с током, соответствующим номиналам моторов. Напряжение питания подается на разъем GP1, а конденсаторы C3 (100nF) и C4 (100uF) являются его фильтрами.

Сборка схемы

Монтаж системы управления моторами не сложен, пайку следует начать с установки одной перемычки. Порядок подключения к плате остальных элементов любой, но удобно начать с резисторов и светодиодов, а в конечном итоге электролитическими конденсаторами и разъемами. Способ монтажа транзистора T2 и термодатчика T1 очень важен.

Следует иметь в виду, что транзистор Т2 работает линейно, поэтому выделяется большая мощность потерь, которая непосредственно переводится в тепло. Плата спроектирована так, чтобы можно было ее прикрутить к радиатору. Транзисторы T1 и T2 необходимо смонтировать на длинных выводах и их отогнуть, чтобы можно было установить на радиатор. Не забудьте прокладки, чтоб изолировать их электрически от радиатора.

Запуск и настройка

Схема, собранная из исправных компонентов, должна заработать сразу. Нужно только помнить о настройке порога с помощью потенциометра P1 так, чтобы при комнатной температуре вентиляторы крутились медленно. Напряжение на вентиляторе при этом режиме составляет около 4 В и достигает 12 В для температуры 80 градусов, то есть при росте примерно на 60 градусов.

Зная необходимый диапазон изменения выходного напряжения и соответствующий ему диапазон изменения температуры можно вычислить коэффициент усиления ОУ U1B. Приведет это к изменению диапазона выходного напряжения, выраженное в милливольтах, а значит к изменению температуры от постоянного значения 2.3 mV/K. Тогда нужно будет с помощью потенциометра P1 всего лишь настроить такую точку работы, чтобы при комнатной температуре выходное напряжение было равно требуемому при расчете нижней границы.

Этот статья посвящена такой немаловажной части современного компьютера, как кулер (двигатель-вентилятор, если быть точным). От него зависит охлаждение системы, а значит нормальная работа компьютера. Подробно о принципе работы кулера можно прочитать в журнале"Радио-#12 за 2001 г.
Большинство вентиляторов выполнены в виде бесколлекторных двигателей с внешним ротором, снабженным крыльчаткой. Напряжение питания обычно 12 Вольт, потребляемый ток, в зависимости от размеров и мощности, от 70 мА до 0,35 А (у наиболее мощных). Коллекторные двигатели не применяют, так как их щетки довольно быстро изнашиваются и создают сильные шумы и вибрации, а также электрические помехи.

На роторе бесколлекторного двигателя установлены постоянные магниты, а на находящемся внутри него статоре - обмотки. Переключение тока в обмотках производится с помощью узла, определяющего положение ротора по воздействию магнитного поля на датчик Холла. Такие датчики внешне напоминают транзисторы и имеют три вывода - напряжение питания, выход и общий. Напряжение на выходе может изменяться или пропорционально напряженности поля, или скачком, в зависимости от конкретной модели датчика.

На рисунке 1 приведена схема двигателя SU8025-M. На статоре двигателя расположены четыре идентичные катушки, содержащие по 190 витков. Намотаны они сложенным вдвое проводом. В зависимости от углового положения датчика Холла относительно ротора, на выходе датчика будет низкий или высокий уровень напряжения.

Если уровень высокий, то открыт транзистор VT1, VT2 закрыт, и через обмотки группы А протекает ток. Ротор поворачивается, вместе с ним поворачивается и его магнитное поле. Когда уровень сигнала на выходе ВН1 сменится низким, VT1 закроется, а VT2 откроется, пропуская ток в группу обмоток Б. Ротор вращается дальше, ток снова переключается в обмотки группы А, и процесс повторяется снова и снова...

В моменты переключения тока на обмотках двигателя возникают выбросы напряжения (благодаря явлению самоиндукции). Для уменьшения этих выбросов параллельно участкам коллектор-эмиттер транзисторов VT1 и VT2 подключены конденсаторы С1 и С2. Диод на входе защищает остальную схему от повреждений в случае неправильного подключения питания.

Есть и другие варианты схем вентиляторов.

В процессе эксплуатации, возможно высыхание смазки, что приводит к повреждению поверхности оси ротора и втулки, а это в свою очередь приводит к усилению вибрации или даже заклиниванию ротора. Так что, если появился гул, который исчезает после нескольких минут работы, - это характерный признак того, что в подшипниках нет смазки. Еще одной проблемой является загустевание смазки, по причине низкого качества или попадание пыли, что является прекрасным тормозом для ротора. Для устранения необходима разборка и смазка.

Другой тип неисправностей - электрические. Как и в любом другом устройстве, неисправности эти бывают двух видов - "нет контакта, где должен быть, или он есть там, где его не должно быть" - обрыв или замыкание. У обмоток статора малое "омическое" сопротивление, поэтому при пробое коммутирующего транзистора или остановке крыльчатки (попадание туда чего-либо или заклинивание подшипника) ток в обмотке значительно возрастает, а это может привести к перегоранию проводов.

Для ограничения тока в случае возможной аварии последовательно в цепь питания вентилятора необходимо включить резистор сопротивлением 10 Ом. Если возникло желание (просто непреодолимое) перемотать сгоревшие обмотки, следует использовать провода марок ПЭВ-2, ПЭТВ-2, ПЭЛБО, ПЭЛШО подходящего диаметра. Точно соблюдайте число витков, иначе новые обмотки будут перегреваться.

Вышедшие из строя транзисторы лучше заменять более высоковольтными, подходящими по параметрам (ну и по размерам тоже...), если сможете такие найти. Скорее всего, придется искать другой сгоревший вентилятор для разборки.

Если установленные в двигателе конденсаторы рассчитаны на напряжение меньше 50 Вольт, их рекомендуют заменять более высоковольтными. Хотя рассмотреть на мелких деталях маркировку бывает и затруднительно...

Ремонт платы, вероятно, будет затруднен из-за ее малых габаритов и особенностей поверхностного монтажа. Обратите внимание на качество пайки - при работе двигатель довольно сильно вибрирует, и иногда детали просто отваливаются.
После окончания ремонта и установки кулера на место проверьте, не мешают ли его вращению шлейфы и провода, иначе придется повторять процедуру ремонта снова.

Cигнализатор вращения кулера

Итак, двигатель вертится, и все вроде в норме. Хорошо, если плата способна контролировать обороты вентиляторов, но ведь у многих еще работают "раритеты", которые и не подозревают о существовании кулеров с датчиками оборотов. Что можно предпринять в этом случае?

Можно попробовать приобрести устройство, описанное в одном из номеров "UPGRADE", - называется оно просто и незатейливо: TTC-ALC Fan Alarm. К этому устройству подключаются до трех вентиляторов, и при остановке любого из них раздается звуковой сигнал. Cигнал будет звучать до тех пор, пока не начнет вращаться вентилятор или не отключится питание. Только вот на снижение оборотов (без полной остановки вентилятора) эта штука не реагирует... Указанная стоимость "сторожа" составляла 11 долларов.

А почему бы не попробовать сделать такого "Большого Брата" для кулера самому? Вот и схема для заинтересовавшихся - рис. 2.

Схема предназначена для контроля оборотов двигателя с датчиком вращения. Выход датчика - транзистор с "открытым коллектором", при работе этот транзистор открывается и закрывается (два импульса на каждый оборот ротора). База транзистора VT1 будет периодически соединяться с общим проводом, и транзистор будет закрыт. При снижении оборотов "замыкание" базы VT1 на корпус будет происходить все реже, и напряжение на С1 начнет увеличиваться (ведь он заряжается через R1).

Как только напряжение станет достаточным для открытия транзистора, засветится индикатор HL1 и заработает мультивибратор на транзисторах VT2 и VT3. Если вентилятор все еще пытается вращаться, то сигналы принимают вид коротких звуковых и световых импульсов.

При полной остановке ротора сигнал становится непрерывным. Недостаток данной схемы выяснился в процессе опытной проверки - если ротор полностью останавливается в определенном положении относительно статора, тревожный сигнал не подается, хотя на уменьшение оборотов схема реагирует нормально. (Возможно, просто вентилятор такой неудачный попался...)

Еще одна схема, которая рассчитана на подключение к двигателю без тахометрического датчика. Реагирует она и на замедление вращения ротора, и на полную его остановку (рис.3).

Последовательно с двигателем включен резистор R1, который ограничивает ток, подающийся на двигатель в аварийных ситуациях. В процессе работы прохождение тока через обмотки носит импульсный характер, соответственно, на R1 будут появляться импульсы напряжения. При токе через резистор, примерно равном 130 мА, падение напряжения на нем составит чуть больше 1 Вольта (в полном соответствии с законом Ома). Импульсы поступают на базу VT1, который выполняет роль "усилителя". С его коллектора через конденсатор С1 эти импульсы управляют транзистором VT2, который периодически открывается этими импульсами и разряжает конденсатор С2.

Напряжение на С2 недостаточно для открывания VT3, сигнализация молчит. При замедлении вращения ротора двигателя импульсы поступают все реже, и когда напряжение на С2 достигнет величины, достаточной для открывания транзистора VT3, загорится светодиод и зазвучит тональный сигнал. Мультивибратор - такой же, как и в предыдущей схеме. Схема, возможно, далека от оптимальной, но работает вполне надежно.

В "вопросах по железу" встретился вопрос о программе, которая бы отрубала всю деятельность процессора по превышению определенной температуры, например, при остановке кулера. Программ, которые бы отрубали процессор, вроде пока не было (если не считать команды на окончание работы и отключение).

Программы, контролирующие обороты кулеров и напряжение на плате, есть, но они работают с современными платами. А что делать остальным? Ответ такой - собрать и опробовать схему, описанную выше, и ввести туда диод, цепь которого показана штриховыми линиями. Возможно, придется увеличить емкость конденсатора С2, чтобы сброс происходил при очень малых оборотах вентилятора, недостаточных для нормального охлаждения процессора. Работать схема будет так же, как и раньше, но вдобавок при остановке кулера кроме срабатывания сигнализации будет происходить непрерывный "сброс". Световая сигнализация в данном случае просто необходима, чтобы сразу установить причину тревоги.

Еще один вариант такой схемы (рис.4), работает аналогично предидущей схеме. Индикация осуществляется светодиодом "Power", который обычно подключается к хорошо знакомому разъему "Power led" на материнской плате. Логика работы проста: если светодиод горит - все нормально, если нет - пора извлекать кулер для "профилактики".

Вопросы по изготовлению

В схемах применимы транзисторы, подобные по параметрам обычным КТ315, КТ361 с граничным рабочим напряжением коллектор-эмиттер не менее 15 Вольт. Светодиоды - любые, желательно красного цвета свечения - сигнал тревоги все-таки... Закрепить их можно в крышке свободного отсека (например, 5").

Желательно будет подписать, какой индикатор к какому вентилятору относится. Величину ограничительного резистора R1 необходимо уточнить - главное, чтобы при работе в нормальном режиме напряжение на нем было чуть более 1 Вольта.

Некоторые пользователи хотят разогнать в своем компьютере абсолютно все, включая вентиляторы. Например, пришел вопрос такого рода: "Есть желание поиздеваться над своим кулером Golden Orb, поиграть с напряжением (в основном, с повышенным). Подключил его к внешнему источнику, а хотелось бы знать и количество оборотов. Как его подключить к матери, чтобы ничего не спалить и обороты определялись?" Для ответа на этот вопрос приводится схема на рисунке 5.

Минус внешнего источника соединяется с минусовым проводом вентилятора и разъема. Плюсовой провод от вентилятора подключается к выводу внешнего источника. Выход датчика оборотов не трогаем.

Помните, что обычно для регулировки оборотов напряжение меняют в пределах 7...13,5 Вольт. Если хотите подать больше - ваше дело, только потом не говорите, что вас не предупреждали... И лучше всего держите наготове запасной кулер...

Устройство термоконтроля

Основная проблема, которая связана с работой кулера - шум, который со временем сильно надоедает. Особенно это касается небольших офисов, где на "двадцати квадратах"- может размещаться 5-6 машин. И это притом, что на таких машинах, как правило, работают программы не требующие больших ресурсов. Частично избавится от шума возможно, например, снизив скорость вращения крыльчатки вентилятора, подключив минусовой провод кулера (обычно черный) не к общему, а к +5в (красный провод питания) тем самым, снизив напряжение питания кулера до 7 вольт, или запитать кулер через стабилитрон в обратном включении. Хотя это и небезопасно, так как может привести к выходу из строя компонентов компьютера в результате недостаточного охлаждения. С вентиляторами, которые подключаются к материнской плате, еще как-то можно бороться, но с основным источником шума - вентилятором в источнике питания дело обстоит сложнее, хотя бы потому что этот вентилятор обеспечивает охлаждение системы в целом. Конечно, дорогие фирменные источники оснащены системой регулирующей работу кулера, но в большинстве компьютеров таких систем нет. Дело в том что производители компьютеров стараются максимально снизить стоимость своей продукции, применяя дешевые источники питания.
Чтобы понизить звук, издаваемый вентиляторами персонального компьютера, можно пойти по пути разумного снижения скорости их вращения. В самом деле, всегда ли нужен пропеллер, гоняющий воздух (и пыль) на полную мощность? Принудительный обдув необходим, если температура охлаждаемого объекта превышает некоторую определенную величину, а ниже нее вентиляторы могут работать вполсилы или не работать вообще, постепенно ускоряясь до своей максимальной скорости с повышением температуры. Так, например, радиаторы современных блоков питания для ПК остаются практически холодными при типовой нагрузке (обычно она заведомо меньше половины максимальных возможностей блока), то есть, нет никакой необходимости "гонять" вентилятор блока питания на полных оборотах, тем более что часто именно он дает основной вклад в шум системного блока.

Чтобы снизить тепловыделение процессора во время даже кратковременных (доли секунды) простоев применяются различные программные охладители (например, CPUidle, Waterfall и др.) которые при помощи специальных команд "усыпляют" процессор во время пауз в работе, благодаря чему его температура резко снижается. Более того, подобные средства программного охлаждения уже встроены в ядро многих современных опера систем (Windows, Linux и др.), и достаточно лишь их активизировать (например, надо установить Windows при включенной в BIOS материнской платы опции ACPI, и эти команды начнут работать автоматически). При этом температура процессора во время вашей активной работы с Word"ом, Photoshop"ом, почтой или браузером вряд ли будет подниматься выше 35 градусов! В этих ситуациях вполне логично замедлить вращение вентилятора процессорного кулера, уменьшив его шум и существенно увеличив срок службы.

Для каждого применения критическая температура регулировки вентиляторов может быть своя, однако в большинстве случаев внутри системного блока вполне подойдет единая универсальная настройка. До температуры термодатчика (расположенного в нужном месте) в 35-40 градусов Цельсия (такая температура далека от критической для любых компьютерных компонентов) вентилятор может вообще не работать, либо работать с минимальным количеством оборотов. При этом издаваемый им звук будет намного тише обычного (на 10-15 дБ при вращении на половинной скорости), а долговечность работы вырастет в несколько раз! По мере повы температуры примерно до 55 градусов вентилятор должен разгоняться на полную скорость и выше 55 градусов - работать на максимальной скорости.

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814.

Рис.7 Принципиальная схема регулятора.

Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов и имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

Рис.8 Внешний вид и топология печатной платы.

Существуют и более сложные схемы регулировки, например - FANSpeed (рис.9)

Рис.9 Принципиальная схема и внешний вид регулятора FANSpeed.

Функция такого управления скоростью вентилятора от термодатчика реализована в простой электронной схеме (рис.9). Схема содержит простейший операционный усилитель типа КР140УД7 (можно применить и КР140УД6), один транзистор (КТ814 или КТ816 любой буквы - только для вентиляторов с максимальным током не более 220 мА), стабилитрон VD1 (любой из КС162 или КС168), несколько резисторов и конденсаторов (допуск номиналов для резисторов - 10 %, для конденсаторов - любой), и обычные кремниевые диоды общего применения (например, КД521, КД522 и др.) в качестве термодатчиков VD3 и VD4. Элементы R9, HL2 и VD6 необязательны и служат только для индикации величины выходного напряжения по яркости свечения светодиода HL2, однако светодиод HL1 необходим, поскольку стабилизирует работу схемы при измене питания.

Работа схемы регулировки скорости вращения вентиляторов от температуры основана на уменьшении с нагревом напряжения на p-n переходе диода (около 2 мВ на градус Цельсия). Настройка рабочего режима схемы сводится к установке подстроечным резистором R4 выходного напряжения, подаваемого на вентилятор, равным примерно 6,5 Вольт при температуре датчика в 37 градусов Цельсия и разомкнутом джампере JP1. Для этого этого датчик на минуту засовывают в подмышку (сухую - чтобы исключить электроконтакт с проводящей кожей). Термочувствительность схемы (скорость увеличения выходного напряжения с температурой) определяется в частности номиналом резистора R6 и для варианта с одним диодом составляет примерно 0,3 Вольта на градус, то есть при данной калибровке на выходе будет 12 Вольт при температуре примерно 55 градусов.

Большинство из 12-вольтовых вентиляторов (как больших для блоков питания, так и поменьше для процессоров и видеокарт) способны стабильно вращаться при напряжении питания 3-5 Вольт (при этом их скорость примерно вдвое меньше номинальной). Однако для уверенного запуска часто необходимо более высокое напряжение 6,5-7 Вольт. Именно с этим расчетом в схему введены диод VD5 и двухпиновых джампер JP1 - при замкнутом джампере напряжение на вентиляторе не опустится ниже примерно 6,5 Вольт даже при температуре 20-25 градусов, что обеспечит бесперебойное вращение вентилятора на низкой скорости. Если вы хотите, чтобы при температуре ниже 30 градусов вентилятор останавливался совсем, джампер надо оставить разомкнутым. Для работы схемы можно использовать один или два диодных термодатчика, включенных параллельно. В последнем случае диоды VD3 и VD4 надо подобрать с примерно одинаковым прямым падением напряжения при одинаковой температуре, а номинал резистора R6 увеличить до 20 кОм. Схема будет срабатывать по более горячему датчику, поэтому, расположив их в разных местах, можно одной приставкой контролировать сразу две температуры. Например, на фотографии один термодатчик расположен прямо на печатной плате приставки и контролирует температуру окружающего воздуха, а другой - выносной на один из радиаторов. При монтаже термодатчиков на радиаторах следует тщательно избегать электрического контакта (и утечек) между выводами диода и другими металлическими частями компьютера, иначе схема будет работать неправильно.

Изменив некоторые номиналы схемы, можно заменить диоды VD3, VD4 на стандартный выносной термодатчик для материнских плат (например, 10-кОмный термистор, см. фото) - конструкция его термочувствительной части больше подходит для монтажа на процессорных кулерах, однако и стоит он намного дороже обычного диода.

Если вентилятор оснащен датчиком скорости вращения (три провода вместо двух), то этот третий провод (контакт ј3 разъема на вентиляторе) идет в обход схемы. При этом датчик вращения будетисправно работать до напряжения на вентиляторе 4,5-5 Вольт, выдавая меандр с логическими уровнями 0 и 5 вольт и удвоенной частотой вращения ротора: два противоположно расположенных на роторе (для равновесия) магнитика по очереди "включают" датчик Холла в статоре, имеющий выход типа открытый сток (коллектор), "подтянутый" на системной плате резистором к питанию +5 В. Однако при низких скоростях вращения (обычно ниже 2600 об./мин. для питания вентилятора меньше 6,5 В) многие материнские платы не способны адекватно считать обороты, выдавая при этом 0. Уверенный счет чаще начинается с 2800-3000 об./мин., так что это нужно учитывать в работе, чтобы попусту не пугаться.


Для уменьшения шума рекомендуется применять проволочную решетку (круглого сечения) для вентиляторов блоков питания и системных блоков (трехдюймовый типоразмер). Снижает свист ветра и улучшает воздуходув по сравнению со штампованными отверстиями в жести корпусов (рис.10).

Защита системного блока от пыли. Обмен опытом.

Есть два устройства, которые создают внутри себя низкое давление, одно из них пылесос, другое компьютер:)

Сложно сказать чем руководствовались разработчики, применив именно такую систему охлаждения, но, тем не менее, так оно есть. И единственный способ борьбы с ней - это установка дополнительных вентиляторов в нижнюю часть передней стенки корпуса и защита их фильтрами. Вентиляторов лучше ставить два - для создания внутри повышеного давления. Нагнетаемый ими воздух частично будет вытягиваться вентилятором блока питания, частично через щели корпуса.

Литература

1. Александр Долинин (

Предыстория

Наступило время навести порядок внутри системного блока. Шум от вентиляторов системы охлаждения процессора и видеокарты уже давно начал доставать своей назойливостью, особенно ночью. Даже при систематическом техобслуживании вентиляторов (чистка, смазка и т.п.) за 3 года своей работы они устарели как физически так и морально, требовались кардинальные меры по модернизации.

Убрать вентиляторы из системы охлаждения возможно только путем установки системы водяного охлаждения (СВО), но не в данном случае. Нет смысла на морально устаревшую машину ставить СВО, пойдем путем модернизации воздушной системы охлаждения. Просто убрать вентиляторы нельзя. Как известно, процессоры Pentium 4, даже младшие модели, выделяют большое количество тепла, компьютеру оно никчему, разве что греться от него, как это делает моя кошка:)

Во время морозов кошка спит на системном блоке. Итак, всё на борьбу с теплом и шумом!

Стратегия:

Снижение шума от вентиляторов, путем снижения их оборотов. В связи с этим вентиляторы должны быть большей производительности. Будем использовать вентиляторы 92×92 мм.
План работ:

    Замена боксового кулера Socket 478 на кулер от Socket 775

Внедрение системы термоконтроля

Система термоконтроля не поддерживается ни моей материнской платой, ни блоком питания, ни видеокартой. Поэтому придется сделать её самому. Полчаса серфинга по сети дали несколько статей по данному вопросу. Сразу скажу, что схемы на терморезисторах не рассматривались, почему-то у меня внутреннее отвращение к терморезисторам. Из всех возможных вариантов термоконтроля за основу была взята статься, которую написанная Михаил Наумов «Еще один вариант термоконтроля вентиляторов».

У меня был один компаратор LM311 (его отечественный аналог) и для проверки работоспособности схемы она была быстро собрана на макетке.

Готовая плата термоконтроля вентилятора

Плата заработала сразу, подстроечником устанавливаются обороты при холодном транзисторе. Выставляем минимальные обороты - вентилятора неслышно. Напряжение на выходе порядка 5,5В. После нагревания транзистора зажигалкой так, чтобы до него нельзя было дотронутся, вентилятор раскручивается почти на полную, напряжение порядка 8,9В.

После проверки работоспособности схемы нужно сделать пару систем: одну для процессора, вторую для блока питания, а та, что на макетке сгодится на видеокарту.

Итак, делаем печатную плату.

Для разводки печатной платы я использовал программу Sprint-Layout 4.0 . Очень хорошая бесплатная программа с русским интерфейсом и широкими возможностями печати. Скачивал по ссылке http://vrtp.ru/screenshots/161_Plata.zip . Минут через 15-20 и получаем разведенную плату под SMD компоненты. Скачать мою схему вы можете здесь же (файл board.lay)

Для изготовления плат я использую «ацетоновую» технологию вместо «утюжной». Тонер лазерного принтера помимо плавления, очень хорошо растворяется в ацетоне и при этом прилипает к меди (и не только к ней). Чтобы не покупать пол-литра ацетона, можно купить жидкость для снятия лака, которым пользуется прекрасная половина человечества, чтобы смывать лак с ногтей. Его можно взять у любимой девушки, жены, мамы, племянницы (нужное подчеркнуть).

Сначала зеркальное изображение разводки платы (благо позволяет программа) печатается на мелованном листе. Хорошо для этой цели подходят журналы, хотя можно использовать и факсовую бумагу.

Нам необходимы: напечатанная на лазерном принтере разводка плата, ацетон, вата, зачищенный мелкой наждачкой фольгированный текстолит.

Далее вырезаем напечатанное изображение, ватой обильно смоченной ацетоном протираем медь. Ждем пока подсохнет. Прикладываем тонером к меди изображение и той же ватой смачиваем бумагу, пока не увидим «проявившийся» сквозь нё рисунок платы. Смочить нужно равномерно всё изображение. Сильно переливать тоже нельзя, а то поплывет.

Смачиваем бумагу ацетоном. После того как изображение «проявилось», нужно дать испариться ацетону. При этом «изображение пропадет». Далее сухой бутерброд из текстолита и прилипшего к нему изображения под бумагой обильно смачиваем холодной водой.

Бумага размокнет и начнет «горбиться», это значит хватит. Далее отрываем бумагу, а тонер остается. На тонере останутся ворсинки от бумаги, их нужно удалить потерев рукой.

После того, как заготовка высохнет, она побелеет. Это от ацетона. Ничего страшного. Долее нужно вытравить ненужную медь. Для этого можно использовать несколько рецептов.

Один из вариантов - раствор медного купороса и поваренной соли в воде в соотношении столовая ложка купороса на две столовые ложки соли в пол-литре воды. Недостатки: в таком растворе процесс идет долго, порядка 2,5 часов, даже при условии поддержания высокой температуры или увеличении концентрации компонентов. Достоинства: доступность, медный купорос можно купить в любом хозяйственном магазине, соль — без слов. Второй вариант - раствор хлорного железа в воде в соотношении 1:2. Температура травления ~ 60-70ºС. Для поддержания высокой температуры я ставлю банку с раствором в ванну и пускаю горячую воду из шланга душа, чтобы она омывала банку. Недостатки: вредные испарения, которые выделяются в процессе травления, а так же тот факт, что при попадании раствора на руки или ванную, остаются желтые пятна, поэтому нужно действовать аккуратнее. Достоинства: в растворе хлорного железа травление происходит быстрее ~ 20 мин, при условии поддержания высокой температуры. Я использовал второй метод.

Перед травлением нужную часть будущей платы отрезаем ножницами по металлу и бросаем в раствор. Во время травления пластиковым пинцетом достаем плату из раствора и наблюдаем на процесс. По завершении травления готовую плату нужно промыть водой и высушить.

Процесс сборки платы вопросов не вызывает. Паяльник с тонким жалом, плюс паяльная паста и легкоплавкое олово минус дрожащие руки и через 20 минут получаем готовое изделие. После пайки используем тот же самый ацетон для отмывания остатков пасты с платы.

После завершения сборки подпаиваем вентилятор и проверяем работоспособность.

Перед включением питания проверяем на короткое замыкание. После подключения проверяем напряжение на входе, на стабилитроне, на вентиляторе. Вращая подстроечник, запускаем вентилятор на минимальных оборотах. Нагреваем зажигалкой транзистор и смотрим как вентиль раскручивается, остужаем его, вентилятор замедляется.

На фотографии нет выходного транзистора, а в реале он используется. При работе микросхема в SMD корпусе греется до 80ºС, пришлось поставить выходной транзистор. Хотя, при сборке на монтажке на микросхеме в DIP корпусе такого нагрева не было.Входной транзистор лучше «одеть» в термоусадку.

Эту плату будем использовать для управления вентилятором процессора и блока питания, для видеокарты используем собранную на монтажке плату.

Замена боксового кулера Socket 478 на кулер от LGA775

Для уменьшения шума от процессорного кулера согласно выбранной стратегии, его нужно перевести на 92 мм вентилятор. В продаже не нашлось кулера под Socket 478 с вентилятором 92x92 мм, самый большой был 80x80 мм. Вдруг возникла идея поставить кулер от LGA 775.

Смотрим:… не совпадают. Дальше смотрим на размер кулера под Socket 775 он всего на 4 мм с одной стороны больше рамки Socket 478. Там стоят конденсаторы, но их можно наклонить путем выпаивания одной из ножек. Идем в магазин и приобретаем кулер GlicialTech Igloo 5050 for Prescott 3.40 GHz, Socket LGA775. Это один из недорогих кулеров под Socket 775 с вентиляторов 92 мм.. Частота вращения 2800 rpm; шум 32dBA.

Итак, приступаем. Достаем материнскую плату из корпуса.

Снятый боксовый кулер отличается от приобретенного, но было бы слишком просто взять и заменить кулер без переделок.

Отличия существенны. Крепления тоже отличаются. Далее снимаем рамку с нашего сокета. Выдавливаем фиксаторы из креплений. Теперь конденсаторы, которые находятся справа нужно немного наклонить. Для этого выпаиваем одну из его ножек, чтобы конденсатор стоял под углом и не мешал новому кулеру.

Далее нам понадобится лобзик и акрил. Лобзик - это такая железяка в форме дуги с ручкой и натянутой пилочкой, для выпиливания фигурных деталей. Акрил, можно заменить алюминием, но обрабатывать будет сложнее.

Как видно из чертежей Intelа, отверстия крепления не совпадают настолько, что места крепления кулера на Socket 478 находятся между ногами кулера Socket 775. Это нам на руку. Вырезаем из акрила пластины, которые будут соединять ноки нового кулера и за эти пластины притянем его к материнской плате. Для снижения напряжения на материнскую плату, заодно вырезаем и подкладку под крепления кулера.

В ножках делаем потаи под винт с конусной головкой, чтобы он не доставал до материнской платы.

Прикручиваем вырезанные пластины к ножкам кулера.

И устанавливаем новый кулер на материнскую плату. Снизу под процессор ставим пластину для разгрузки. Затягиваем винты по диагонали, для равномерного распределения нагрузок и для того, чтобы избежать перегрузок.

Итак, результат: кулер из под Socket 775 «встал» на Socket 478 как родной, и конденсаторы почти не мешают. Затягивать нужно умеренно, чтобы не сломать материнскую плату, но и не допускать ослабления. Неплотное прилегание кулера к процессору может негативно сказаться на охлаждении.

Перед установкой кулера поверхность процессора была немного прошлифована при помощи кожи и пасты ГОИ до зеркального блеска. Термопаста использовалась та, которая была нанесена на кулер его производителем. В результате получился более производительный кулер с 92 мм вентилятором и системой термоконтроля. Температура процессора в процессе покоя составляет 44ºС, частота вращения вентилятора 1000 rpm. Во время загрузки процессора температура не поднималась выше 59ºС, при этом вентилятор вращался со скоростью 2300 rpm. В этом режиме его уже слышно, но меньше чем на максимальных 2800rpm. Итак, в корпусе стало заметно тише.

Замена радиатора и вентилятора в блоке питания

Вместе с корпусом neo мне достался блок питания Golden Power на 250Вт. Его мощности для моей системы вполне хватает, но шумит он сильно, и греется ужасно. Температура на одном из радиаторов внутри блока питания достигает 80ºС. После разборки стало ясно, что он (радиатор) маленький, а на нем висят «горячие» транзисторы.

Пришлось его(радиатор) отправить на заслуженный отдых. А для того чтобы поставить новый пришлось наклонить конденсатор, который стоял рядом.

Освободившийся радиатор от боксового кулера Intel Socket 478 было решено раскроить. От него было отпилено с одной стороны одна «секция» и с другой стороны две «секции». После шлифовки полученных радиаторов на них «поселились» выпаянные транзисторы. Их выводы нужно удлинить, так как радиатор будет стоять в «другой позе».

К ребрам большего радиатора крепим плату термоконтроля. Для изолирования винт крепится через текстолитовую шайбу. Вентилятор, который был установлен в блоке питания отправился в ящик с хламом, в результате чего в блоке питания стало свободней. Придерживаясь выбранной стратегии в верхней крышке блока питания было вырезано отверстие под вентилятор размером 92×92 мм. Вырезанное отверстие получилось не очень эстетичным, поэтому из красного акрила была вырезана декоративная панель, которая сделала вид блока питания более привлекательным и выровняла отверстие под вентилятор.

Вентилятор находится над самым жарким радиатором. После модернизации температура нового радиатора не поднималась больше 50ºС. И то, до такой температуры он нагревается при полной нагрузке. А так выглядят мои подопытные в корпусе.

Замена радиаторов и вентилятора на видеокарте

До начала модернизации моя карта GeForce4 MX 440 охлаждалась кулером от Socket 370, но вентилятор на нем был намного древнее вентилятора моего блока питания. Од даже заводился только после смазки. Было принято решение радиатор оставить, только установить правильно, а вентилятор отправить на свалку. Радиатор, а точнее то, что осталось от боксового радиатора Socket 478 был раскроен на маленькие для охлаждения памяти видеокарты, ведь с хорошим охлаждением можно погнать карту. После распиловки они были отшлифованы и подошвы их были отполированы.

Графический процессор был вымазан суперклеем, на него умельцы из сервисного центра наклеили суперклеем кулер от чипсета какой-то материнской платы. Пришлось его отшлифовать мелкой наждачкой и отполировать пастой ГОИ. После подготовки на микросхемы памяти через термопасту были установлены радиаторы. В качестве крепления были использованы кольца от бельевых прищепок, они очень хорошо прижимают радиаторы и не доставляют хлопот при установке.

Радиатор от Socket 370 был возвращен на место, через термопасту. Для крепления в нем вырезаны пазы и отверстия под гайку. Установке довольно огромного радиатора над графическим чипом мешали два конденсатора, в углах радиатора. Они были переставлены на противоположную сторону карты. Для установки 92 мм. вентилятора пришлось изготовить из акрила соотвестсвующие крепления.

Для того, чтобы правильно приклеить уши под вентилятор, поклейка производилась непосредственно на вентиляторе, воизбежании недоразумений.

После высыхания клея приступаем к сборке. Кронштейны устанавливаются на вентилятор. Затем вся конструкция надевается на карту и фиксируется винтом. Я думал что потребуется 2 винта, а оказалось достаточно одного. Второй заменила стяжка, которая держала провод от вентилятора. Между ребрами радиатора поселился транзистор платы термоконтроля вентилятора (которая была собрана на макетке).

А так выглядит новоиспеченный монстр в системном блоке.

После установки такого охлаждения грех было не попробовать погнать карту. Сильно разгонять ее не имеет смысла, все равно конвейеров в ней не прибавится да и аппаратная поддержка DirectX9.0 не появится. Таким образом частоты графического процессора и памяти были немного подняты. Частота графического ядра была поднята с 270 до 312 МГц, а частота памяти с 400 до 472 МГц. Такой разгон не каких отрицательных последствий не вызвал.

Обзор универсального 10-гигабитного коммутатора QNAP QSW-1208-8C

У этого свитча нет конкурента с таким же числом портов и поддержкой 2.5GBase-T и 5GBase-T. Мы протестировали данную модель на совместимость с имеющимися сетевыми картами и кабелями, а так же измерили производительность.

 

Возможно, будет полезно почитать: